22 research outputs found

    Structural, electronic, and magnetic characteristics of Np_2Co_(17)

    Get PDF
    A previously unknown neptunium-transition-metal binary compound Np_2Co_(17) has been synthesized and characterized by means of powder x-ray diffraction, ^(237)Np Mössbauer spectroscopy, superconducting-quantum-interference-device magnetometry, and x-ray magnetic circular dichroism (XMCD). The compound crystallizes in a Th_2Ni_(17)-type hexagonal structure with room-temperature lattice parameters α=8.3107(1) Å and c=8.1058(1) Å. Magnetization curves indicate the occurrence of ferromagnetic order below T_C>350 K. Mössbauer spectra suggest a Np^(3+) oxidation state and give an ordered moment of μ_(Np)=1.57(4) μ_B and μ_(Np)=1.63(4) μ_B for the Np atoms located, respectively, at the 2b and 2d crystallographic positions of the P6_3/mmc space group. Combining these values with a sum-rule analysis of the XMCD spectra measured at the neptunium M_(4,5) absorption edges, one obtains the spin and orbital contributions to the site-averaged Np moment [μ_S=−1.88(9) μ_B, μ_L=3.48(9) μ_B]. The ratio between the expectation value of the magnetic-dipole moment and the spin magnetic moment (m_(md)/μS=+1.36) is positive as predicted for localized 5f electrons and lies between the values calculated in intermediate-coupling (IC) and jj approximations. The expectation value of the angular part of the spin-orbit-interaction operator is in excellent agreement with the IC estimate. The ordered moment averaged over the four inequivalent Co sites, as obtained from the saturation value of the magnetization, is μ_(Co)≃1.6 μ_B. The experimental results are discussed against the predictions of first-principles electronic-structure calculations based on the spin-polarized local-spin-density approximation plus the Hubbard interaction

    Magnetic properties and Moessbauer effect studies of Ce1-xScxFe4Al8 system

    Get PDF
    The investigations of the magnetic and electrical properties as well as the 57Fe Moessbauer effect are presented for Ce1-xScxFe4Al8 solid solution with 0<x<1 in the temperature range 4-300 K. Magnetic susceptibility follows a Curie-Weiss law above 200 K. The effective magnetic moment decreases with the Sc content. At temperatures lower than 130 K all compounds studied are antiferromagnets. The Neel temperature, TN is not affected by substitution of Sc for Ce. TN has no reflection in any anomaly in ρ(T). The Moessbauer spectra at temperatures lower than TN exhibit one Zeeman sextet related to the Fe nucleus at the 8(f) position. The hyperfine parameters Hhf, IS, QS have been estimated as a function of Sc concentration. The increasing of Sc content diminishes Hhf on the Fe nucleus. The calculations of electron-density distribution along the 〈1 1 1〉 direction in elemental crystallographic cell indicate a remarkable increase of electron charge at the Fe sites with the Sc content increasing. The 40-49° cone angles of the Fe sublattices at 12 K have been estimated from Moessbauer spectra analysis

    Magnetic and hyperfine interaction in RFe4Al8 (R = Ce,Sc) compounds

    Get PDF
    Magnetic properties of ScFe4Al8 and CeFe4Al8 compounds have been studied by magnetization and Mössbauer effect measurements. Magnetic transition temperatures estimated from Mössbauer spectra (B = 0) 170 K for CeFe4Al8 and 225 K for ScFe4Al8 are not confirmed by magnetization measurements. Contrary, the pronounced maxima at Tmax = 130 and 125 K in DC magnetization curves (B = 1 kOe) were found for ScFe4Al8 and CeFe4Al8, respectively. Thermomagnetic, the so-called zero field (ZFC) and field cooling (FC) experiments show temperature-dependent irreversibilities below the "freezing" temperature, Tf, which diminishes with application of external magnetic field. The Mössbauer studies show the coexistence of magnetically (sextet) and non-magnetically (quadrupole doublet) split patterns in the wide temperature range far away from Tmax. All these observations indicate that the systems studied are either a spin-glass or are the mixture of AF and spin-glass state. © 2001 Elsevier Science B.V

    Magnetic and hyperfine interaction in YbFe4Al8 compound

    No full text
    57Fe Mössbauer spectra of YbFe4Al8 of the tetragonal ThMn12 structure have been investigated. Mössbauer measurements at the lowest temperatures yield information on the iron population in three crystallographic sites 8f, 8j and 8i available for Fe atoms. The obtained results indicate on the coexistence of magnetically ordered and paramagnetic-like Fe moments within antiferromagnetic phase of YbFe4Al8. The MS measurements show that the onset of short range antiferromagnetic interaction in the Fe sublattice takes place at 220 K

    57Fe Mössbauer effect studies of ErFe11Ti and ErFe11TiH compounds

    No full text
    Ferromagnetic compounds ErFe11TiHx (x = 0, 1) have been investigated by 57Fe Mössbauer spectroscopy in the temperature range 20–300 K. Mössbauer spectra were analyzed in terms of a model which takes into account the local environment of Fe atoms on three crystallographic sites (8f, 8j and 8i) and an influence of the random distribution of titanium on the 8i site. The 14 sextets with different intensities have been considered. The temperature dependencies of hyperfine interaction parameters and subspectra contributions were derived from experimental spectra. The hyperfine fields and the isomer shift increasing upon hydrogenation are discussed in terms of the hydrogen-induced Wigner-Seitz unit cell expansion and the s-electrons transfer from Fe atoms to the adjacent hydrogen atoms

    Spin glass behaviour in the ternary U3Fe4+xAl12-x uranium-iron aluminide

    No full text
    Intermetallics, 2009, 17, 25–3

    Magnetic properties and Moessbauer effect studies of Ce1-xScxFe4Al8 system

    No full text
    The investigations of the magnetic and electrical properties as well as the 57Fe Moessbauer effect are presented for Ce1-xScxFe4Al8 solid solution with 0<x<1 in the temperature range 4-300 K. Magnetic susceptibility follows a Curie-Weiss law above 200 K. The effective magnetic moment decreases with the Sc content. At temperatures lower than 130 K all compounds studied are antiferromagnets. The Neel temperature, TN is not affected by substitution of Sc for Ce. TN has no reflection in any anomaly in ρ(T). The Moessbauer spectra at temperatures lower than TN exhibit one Zeeman sextet related to the Fe nucleus at the 8(f) position. The hyperfine parameters Hhf, IS, QS have been estimated as a function of Sc concentration. The increasing of Sc content diminishes Hhf on the Fe nucleus. The calculations of electron-density distribution along the 〈1 1 1〉 direction in elemental crystallographic cell indicate a remarkable increase of electron charge at the Fe sites with the Sc content increasing. The 40-49° cone angles of the Fe sublattices at 12 K have been estimated from Moessbauer spectra analysis

    Magnetic and hyperfine interaction in RFe4Al8 (R = Ce,Sc) compounds

    No full text
    Magnetic properties of ScFe4Al8 and CeFe4Al8 compounds have been studied by magnetization and Mössbauer effect measurements. Magnetic transition temperatures estimated from Mössbauer spectra (B = 0) 170 K for CeFe4Al8 and 225 K for ScFe4Al8 are not confirmed by magnetization measurements. Contrary, the pronounced maxima at Tmax = 130 and 125 K in DC magnetization curves (B = 1 kOe) were found for ScFe4Al8 and CeFe4Al8, respectively. Thermomagnetic, the so-called zero field (ZFC) and field cooling (FC) experiments show temperature-dependent irreversibilities below the "freezing" temperature, Tf, which diminishes with application of external magnetic field. The Mössbauer studies show the coexistence of magnetically (sextet) and non-magnetically (quadrupole doublet) split patterns in the wide temperature range far away from Tmax. All these observations indicate that the systems studied are either a spin-glass or are the mixture of AF and spin-glass state. © 2001 Elsevier Science B.V
    corecore