11 research outputs found

    Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS

    Get PDF
    We present a detailed examination of a multiple InxGa1-xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks

    Growth interruption strategies for interface optimization in GaAsSb/GaAsN type-II superlattices

    Get PDF
    Recently, GaAsSb/GaAsN type II short-period superlattices (SLs) have been proposed as suitable structures to be implemented in the optimal design of monolithic multi-junction solar cells. However, due to strong surface Sb segregation, experimental Sb composition profiles differ greatly from the nominal square-wave design. In this work, the improvement of the interface quality of these SLs in terms of compositional abruptness and surface roughness has been evaluated by implementing different growth interruption times under Sb4/As4 (soaking) and As4 (desorption) overpressure conditions before and after the growth of GaAsSb layers, respectively. The com-bined effects of both processes enhance Sb distribution, achieving squarer compositional profiles with reduced surface roughness interfaces. It has been found that the improvement in compositional abruptness is quantita-tively much higher at the lower interface, during soaking, than at the upper interface during desorption. Conversely, a larger decrease in surface roughness is achieved at the upper interface than at the lower interface. Fitting of the Sb segregation profiles using the 3-layer kinetic fluid model has shown that the increase in Sb incorporation rate is due to the decrease in segregation energy, presumably to changes in the surface recon-struction of the floating layer at the surface

    Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods

    Get PDF
    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%

    Structural and morphological studies on wet-etched InAlGaN barrier HEMT structures

    No full text
    Developer-based wet chemical etch of nearly lattice-matched InAlGaN/GaN heterostructures (HEMT-like) has been studied in detail by means of Rutherford backscattering spectroscopy, x-ray diffraction, atomic force microscopy and reciprocal space mapping (RSM). Etch isotropy depended on the rms surface roughness of the as-grown material. The profiles of etched samples varied in crack density, giving rise to island-like structures. We found that a possible reason for the preferential etching can be ascribed to the dislocations present in the quaternary layers originating in the underlying GaN. Moreover, the etched material suffers crystal relaxation as confirmed by RSM

    Q-factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques

    No full text
    A 3 lambda/2 (In,Ga)N/GaN resonant cavity, designed for similar to 415nm operation, is grown by molecular beam epitaxy and is sandwiched between a 39.5-period (In,Al)N/GaN distributed Bragg reflector (DBR), grown on c-plane GaN-on-sapphire pseudo-substrate by metal-organic vapor phase epitaxy and an 8-period SiO2/ZrO2 DBR, deposited by electron beam evaporation. Optical characterization reveals an improvement in the cavity emission spectral purity of approximately one order of magnitude due to resonance effects. The combination of spectrophotometric and micro-reflectivity measurements confirms the strong quality (Q)-factor dependence on the excitation spot size. We derive simple analytical formulas to estimate leak and residual absorption losses and propose a simple approach to model the Q-factor and to give a quantitative estimation of the weight of cavity disorder. The model is in good agreement with both transfer-matrix simulation and the experimental findings. We point out that the realization of high Q-factor (In,Ga)N containing microcavities on GaN pseudo-substrates is likely to be limited by the cavity disorder. (C) 2013 AIP Publishing LLC
    corecore