6 research outputs found

    Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to Function in Mammalian Cells

    Get PDF
    A previously engineered Methanocaldococcus jannaschii –tyrosyl-tRNA synthetase pair orthogonal to Escherichia coli was modified to become orthogonal in mammalian cells. The resulting -tyrosyl-tRNA synthetase pair was able to suppress an amber codon in the green fluorescent protein, GFP, and in a foldon protein in mammalian cells. The methodology reported here will allow rapid transformation of the much larger collection of existing tyrosyl-tRNA synthetases that were already evolved for the incorporation of an array of over 50 unnatural amino acids into proteins in Escherichia coli into proteins in mammalian cells. Thus we will be able to introduce a large array of possibilities for protein modifications in mammalian cells

    Suppression of an amber codon inserted into the GFP-encoding gene.

    No full text
    <p>(A) Full-length GFP was expressed in HEK 293T cells only in the presence of a <i>M. jannaschii</i> TyrRS- pair designed to be orthogonal to mammalian cells. (B) Western blot analysis of full-length GFP probed with anti-His antibodies.</p

    The orthogonality of the <i>M. jannaschii</i> TyrRS- pair was verified on western blots probed with anti-V5 antibodies.

    No full text
    <p>Expression of full-length foldon was monitored when various tRNAs were introduced into the HEK 293T cells. Note that the tRNA mutants used in these experiments were slightly different from those depicted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011263#pone-0011263-g001" target="_blank">figure 1</a>.</p
    corecore