33 research outputs found

    Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48

    Get PDF
    The rhizosphere-associated bacterium Serratia plymuthica HRO-C48 is not only able to suppress symptoms caused by soil-borne pathogens but is also able to stimulate growth of plants. Detailed knowledge about the underlying mechanisms and regulation are crucial for the application in biocontrol strategies. To analyse the influence of N-acyl homoserine lactone (AHL)-mediated communication on the biocontrol activity, the AHL-degrading lactonase AiiA was heterologously expressed in the strain, resulting in abolished AHL production. The comparative analysis of the wild type and AHL negative mutants led to the identification of new AHL-regulated phenotypes. In the pathosystem Verticillium dahliae-oilseed rape, the essential role of AHL-mediated signaling for disease suppression was demonstrated. In vitro, the regulatory function of AHLs in the synthesis of the plant growth hormone indole-3-acetic acid is shown for the first time. Additionally, swimming motility was found to be negatively AHL regulated. In contrast, production of extracellular hydrolytic enzymes is shown to be positively AHL-regulated. HRO-C48 emits a broad spectrum of volatile organic compounds that are involved in antifungal activity and, interestingly, whose relative abundances are influenced by quorum sensing (QS). This study shows that QS is crucial for biocontrol activity of S. plymuthica and discusses the impact for the application of the strain as a biocontrol agen

    Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica

    Get PDF
    One mechanism that bacteria have adopted to regulate the production of antimicrobial compounds is population-density-dependent LuxRI-type quorum sensing (QS), exploiting the production of N-acyl homoserine lactone (AHL) autoinducer signals. In biocontrol bacteria, most known cases involve the AHL control of phenazine antibiotics production by rhizospheric pseudomonads. This work is the first to demonstrate that phenazines are not the only group of biocontrol-related antibiotics whose production is regulated by QS systems. Strain HRO-C48 of Serratia plymuthica isolated from the rhizosphere of oilseed rape and described as a chitinolytic bacterium, which protects crops against Verticillium wilt, was also shown to produce wide-range antibiotic pyrrolnitrin and several AHLs, including N-butanoyl-HSL, N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL). The genes splI and splR, which are analogues of luxI and luxR genes from other Gram-negative bacteria, were cloned and sequenced. The mutant AHL-4 (splI::miniTn5) was simultaneously deficient in the production of AHLs and pyrrolnitrin, as well as in its ability to suppress the growth of several fungal plant pathogens in vitro. However, pyrrolnitrin production could be restored in this mutant by introduction of the splIR genes cloned into a plasmid or by addition of the conditioned medium from strain C48 or OHHL standard to the growth mediu

    Identification and Characterization of an N-Acylhomoserine Lactone-Dependent Quorum-Sensing System in Pseudomonas putida Strain IsoF

    No full text
    Recent reports have shown that several strains of Pseudomonas putida produce N-acylhomoserine lactones (AHLs). These signal molecules enable bacteria to coordinately express certain phenotypic traits in a density-dependent manner in a process referred to as quorum sensing. In this study we have cloned a genomic region of the plant growth-promoting P. putida strain IsoF that, when present in trans, provoked induction of a bioluminescent AHL reporter plasmid. Sequence analysis identified a gene cluster consisting of four genes: ppuI and ppuR, whose predicted amino acid sequences are highly similar to proteins of the LuxI-LuxR family, an open reading frame (ORF) located in the intergenic region between ppuI and ppuR with significant homology to rsaL from Pseudomonas aeruginosa, and a gene, designated ppuA, present upstream of ppuR, the deduced amino acid sequence of which shows similarity to long-chain fatty acid coenzyme A ligases from various organisms. Using a transcriptional ppuA::luxAB fusion we demonstrate that expression of ppuA is AHL dependent. Furthermore, transcription of the AHL synthase ppuI is shown to be subject to quorum-sensing regulation, creating a positive feedback loop. Sequencing of the DNA regions flanking the ppu gene cluster indicated that the four genes form an island in the suhB-PA3819 intergenic region of the currently sequenced P. putida strain KT2440. Moreover, we provide evidence that the ppu genes are not present in other AHL-producing P. putida strains, indicating that this gene cluster is so far unique for strain IsoF. While the wild-type strain formed very homogenous biofilms, both a ppuI and a ppuA mutant formed structured biofilms with characteristic microcolonies and water-filled channels. These results suggest that the quorum-sensing system influences biofilm structural development

    Secondary Metabolites of Flustra foliacea and Their Influence on Bacteria

    No full text
    The North Sea bryozoan Flustra foliacea was investigated to determine its secondary metabolite content. Gas chromatography-mass spectrometry analysis of a dichloromethane extract of the bryozoan enabled 11 compounds to be identified. Preparative high-performance liquid chromatography of the extract resulted in the isolation of 10 brominated alkaloids (compounds 1 to 10) and one diterpene (compound 11). All of these compounds were tested to determine their activities in agar diffusion assays against bacteria derived from marine and terrestrial environments. Compounds 1, 3 to 7, 10, and 11 exhibited significant activities against one or more marine bacterial strains originally isolated from F. foliacea but only weak activities against all of the terrestrial bacteria. By using the biosensors Pseudomonas putida(pKR-C12), P. putida(pAS-C8), and Escherichia coli(pSB403) the antagonistic effect on N-acyl-homoserine lactone-dependent quorum-sensing systems was investigated. Compounds 8 and 10 caused reductions in the signal intensities in these bioassays ranging from 50 to 20% at a concentration of 20 μg/ml

    Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain ofSerratia plymuthica

    Full text link
    One mechanism that bacteria have adopted to regulate the production of antimicrobial compounds is population-density-dependent LuxRI-type quorum sensing (QS), exploiting the production of N-acyl homoserine lactone (AHL) autoinducer signals. In biocontrol bacteria, most known cases involve the AHL control of phenazine antibiotics production by rhizospheric pseudomonads. This work is the first to demonstrate that phenazines are not the only group of biocontrol-related antibiotics whose production is regulated by QS systems. Strain HRO-C48 of Serratia plymuthica isolated from the rhizosphere of oilseed rape and described as a chitinolytic bacterium, which protects crops against Verticillium wilt, was also shown to produce wide-range antibiotic pyrrolnitrin and several AHLs, including N-butanoyl-HSL, N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL). The genes splI and splR, which are analogues of luxI and luxR genes from other Gram-negative bacteria, were cloned and sequenced. The mutant AHL-4 (splI::miniTn5) was simultaneously deficient in the production of AHLs and pyrrolnitrin, as well as in its ability to suppress the growth of several fungal plant pathogens in vitro. However, pyrrolnitrin production could be restored in this mutant by introduction of the splIR genes cloned into a plasmid or by addition of the conditioned medium from strain C48 or OHHL standard to the growth mediu

    The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis

    Full text link
    A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A. crenata
    corecore