13 research outputs found

    Magnetic Solid-Phase Extraction of Cadmium Ions by Hybrid Self-Assembled Multicore Type Nanobeads

    No full text
    Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g

    Eco-Friendly Materials Obtained by Fly Ash Sulphuric Activation for Cadmium Ions Removal

    No full text
    Wastes are the sustainable sources of raw materials for the synthesis of new adsorbent materials. This study has as objectives the advanced capitalization of fly ash, by sulphuric acid activation methods, and testing of synthesized materials for heavy metals removal. Based on the previous studies, the synthesis parameters were 1/3 s/L ratio, 80 °C temperature and 10% diluted sulphuric acid, which permitted the synthesis of an eco-friendly adsorbent. The prepared adsorbent was characterized through SEM, EDX, FTIR, XRD and BET methods. Adsorption studies were carried out for the removal of Cd2+ ions, recognized as ions dangerous for the environment. The effects of adsorbent dose, contact time and metal ion concentrations were studied. The data were tested in terms of Langmuir and Freundlich isotherm and it was found that the Langmuir isotherm fitted the adsorption with a maximum adsorption capacity of 28.09 mg/g. Kinetic data were evaluated with the pseudo-first-order model, the pseudo-second-order model and the intraparticle diffusion model. The kinetics of cadmium adsorption into eco-friendly material was described with the pseudo-second-order model, which indicated the chemisorption mechanism

    Application of thermal analysis to improve the preparation conditions of zeolitic materials from flying ash

    No full text
    International audienceThe aim of this study is to gain a better understanding of ash properties that makes it suitable for obtaining geopolymeric/zeolitic materials, as well as to demonstrate that thermal analysis can be used as an innovative procedure to compare different activation methods. Establishing a relationship between the physical and chemical characteristics of ash and materials obtained from fly ash is an important step towards producing large quantities of zeolitic materials with pre-established properties. In this paper, a direct relationship between TG analysis and the type of materials obtained from the local fly ash, by different methods, was proved for the first time. The experimental results demonstrated that the materials with a surface area over 40 m(2)/g and pores volume over 0.12 cm(3)/g exhibited the highest thermal loss. The samples exhibiting thermal loss over 10% contained zeolites phases, a fact confirmed by FT-IR and XRD, and more than 7% sodium in samples structure, as demonstrated by EDAX analysis. The results shown that thermal analysis allowed identification of the materials, as well as elucidation of the processes occurring during the thermal heating. Concordant to this study, the conditions for the optimum activation method consisted in: direct activation method, temperature equal to 363 K-o, contact time 4 h, 1/3 solid/liquid ratio and use of 5M NaOH activation solution. It is known that TG/DTG analysis is an easy and the economic feasible method. TG analysis for establishing the zeolitization degree on the base of the number of stages (four stages), but more important, on the base of total mass losses (over 10%) is recommended

    Studies on the Removal of Congo Red Dye by an Adsorbent Based on Fly-Ash@Fe<sub>3</sub>O<sub>4</sub> Mixture

    No full text
    The effectiveness of a Fe3O4-loaded fly ash composite for the adsorption of Congo red dye was assessed in this work. The structure and properties of the magnetic adsorbent were established by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The magnetic results showed a saturation magnetization value of 6.51 emu/g and superparamagnetic behavior. The main parameters that influence the removal of Congo red dye adsorbent such as dose, initial concentration, and contact time were examined. The Freundlich adsorption isotherm and pseudo-second-order kinetic model provided the best fit for the experimental findings. The Congo red dye’s maximum adsorption capacity of 154 mg/g was reported in the concentration range of 10–100 mg/L, using the proposed magnetic adsorbent. The results of the recyclability investigation demonstrated that the circular economy idea is valid. The adsorbent that was synthesized was also further characterized by XRD and FTIR techniques after Congo red dye adsorption

    Adsorption Performance of Modified Fly Ash for Copper Ion Removal from Aqueous Solution

    No full text
    The initial characteristics of Romanian fly ash from the CET II Holboca power plant show the feasibility of its application for the production of a new material with applicability in environmental decontamination. The material obtained was characterized using standard techniques: scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), instrumental neutron activation analysis (INAA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the Brunauer–Emmett–Teller (BET) surface area, and thermogravimetric differential thermal analysis (TG-DTA). The adsorption capacity of the obtained material was evaluated in batch systems with different values of the initial Cu(II) ion concentration, pH, adsorbent dose, and contact time in order to optimize the adsorption process. According to the experimental data presented in this study, the adsorbent synthesized has a high adsorption capacity for copper ions (qmax = 27.32–58.48 mg/g). The alkali treatment of fly ash with NaOH improved the adsorption capacity of the obtained material compared to that of the untreated fly ash. Based on the kinetics results, the adsorption of copper ions onto synthesized material indicated the chemisorption mechanism. Notably, fly ash can be considered an important beginning in obtaining new materials with applicability to wastewater treatment

    Adsorption Performance of Modified Fly Ash for Copper Ion Removal from Aqueous Solution

    No full text
    The initial characteristics of Romanian fly ash from the CET II Holboca power plant show the feasibility of its application for the production of a new material with applicability in environmental decontamination. The material obtained was characterized using standard techniques: scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), instrumental neutron activation analysis (INAA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the Brunauer–Emmett–Teller (BET) surface area, and thermogravimetric differential thermal analysis (TG-DTA). The adsorption capacity of the obtained material was evaluated in batch systems with different values of the initial Cu(II) ion concentration, pH, adsorbent dose, and contact time in order to optimize the adsorption process. According to the experimental data presented in this study, the adsorbent synthesized has a high adsorption capacity for copper ions (qmax = 27.32–58.48 mg/g). The alkali treatment of fly ash with NaOH improved the adsorption capacity of the obtained material compared to that of the untreated fly ash. Based on the kinetics results, the adsorption of copper ions onto synthesized material indicated the chemisorption mechanism. Notably, fly ash can be considered an important beginning in obtaining new materials with applicability to wastewater treatment

    Magnetic Solid-Phase Extraction of Cadmium Ions by Hybrid Self-Assembled Multicore Type Nanobeads

    No full text
    Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g
    corecore