32 research outputs found

    Within- and trans-generational plasticity: Seed germination responses to light quantity and quality

    Get PDF
    Plants respond not only to the environment in which they find themselves, but also to that of their parents. The combination of within- and trans-generational phenotypic plasticity regulates plant development. Plants use light as source of energy and also as a cue of competitive conditions, since the quality of light (ratio of red to farred light, R:FR) indicates the presence of neighbouring plants. Light regulates many aspects of plant development, including seed germination. To understand how seeds integrate environmental cues experienced at different times, we quantified germination responses to changes in light quantity (irradiance) and quality (R:FR) experienced during seed maturation and seed imbibition in Arabidopsis thaliana genotypes that differ in their innate dormancy levels and after treatments that break or reinduce dormancy. In two of the genotypes tested, reduced irradiance as well as reduced R:FR during seed maturation induced higher germination; thus, the responses to light quantity and R:FR reinforced each other. In contrast, in a third genotype, reduced irradiance during seed maturation induced progeny germination, but response to reduced R:FR was in the opposite direction, leading to a very weak or no overall effect of a simulated canopy experienced by the mother plant. During seed imbibition, reduced irradiance and reduced R:FR caused lower germination in all genotypes. Therefore, responses to light experienced at different times (maturation vs. imbibition) can have opposite effects. In summary, seeds responded both to light resources (irradiance) and to cues of competition (R:FR), and trans-generational plasticity to light frequently opposed and was stronger than within-generation plasticity.Fil: Vayda, Katherine. University of Duke; Estados UnidosFil: Donohue, Kathleen. University of Duke; Estados UnidosFil: Auge, Gabriela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University of Duke; Estados Unido

    Plant environmental memory: implications, mechanisms, and opportunities for plant scientists and beyond

    Get PDF
    Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant’s environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world

    Structural and Functional Comparison of SARS-CoV-2-Spike Receptor Binding Domain Produced in Pichia pastoris and Mammalian Cells

    Get PDF
    The yeast Pichia pastoris is a cost-effective and easily scalable system for recombinant protein production. In this work we compared the conformation of the receptor binding domain (RBD) from SARS-CoV-2 Spike protein expressed in P. pastoris and in the well established HEK-293T mammalian cell system. RBD obtained from both yeast and mammalian cells was properly folded, as indicated by UV-absorption, circular dichroism and tryptophan fluorescence. They also had similar stability, as indicated by temperature-induced unfolding (observed Tm were 50 °C and 52 °C for RBD produced in P. pastoris and HEK-293T cells, respectively). Moreover, the stability of both variants was similarly reduced when the ionic strength was increased, in agreement with a computational analysis predicting that a set of ionic interactions may stabilize RBD structure. Further characterization by HPLC, size-exclusion chromatography and mass spectrometry revealed a higher heterogeneity of RBD expressed in P. pastoris relative to that produced in HEK-293T cells, which disappeared after enzymatic removal of glycans. The production of RBD in P. pastoris was scaled-up in a bioreactor, with yields above 45 mg/L of 90% pure protein, thus potentially allowing large scale immunizations to produce neutralizing antibodies, as well as the large scale production of serological tests for SARS-CoV-2.Fil: Zelada, Alicia Mercedes. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Auge, Gabriela Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blaustein, Matías. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Bredeston, Luis María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Corapi, Enrique Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Craig, Patricio Oliver. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cossio, Leandro Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Agrobiotecnología; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Dain, Liliana Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". Centro Nacional de Genética Médica; ArgentinaFil: D’Alessio, Cecilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Elias, Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Fernández, Natalia Brenda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gasulla, Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Gorojovsky, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gudesblat, Gustavo Eduardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Herrera, Maria Georgina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ibañez, Lorena Itatí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Idrovo Hidalgo, Tommy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Iglesias Randon, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; ArgentinaFil: Kamenetzky, Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Nadra, Alejandro Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Pavan, Carlos Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Pavan, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Pignataro, María Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roman, Ernesto Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ruberto, Lucas Adolfo Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Rubinstein, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santos, Javier. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Velázquez Duarte, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Zelada, Alicia Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentin

    Dataset: Role of the RNA-directed DNA Methylation pathway in the regulation of maternal effects in Arabidopsis thaliana seed germination

    No full text
    Raw data for the article "Role of the RNA-directed DNA Methylation pathway in the regulation of maternal effects in Arabidopsis thaliana seed germination". The file shows the final germination counts and the total number of incubated seeds for the mutant lines used in the study to test for maternal effects of ambient temperatures on seeds of Arabidopsis thaliana.Related Publication: Role of the RNA-directed DNA Methylation pathway in the regulation of maternal effects in Arabidopsis thaliana seed germination Ailén Authier Fundación Instituto Leloir, Buenos Aires, Argentina, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Pablo Cerdán Fundación Instituto Leloir, Buenos Aires, Argentina, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina Gabriela A. Auge Fundación Instituto Leloir, Buenos Aires, Argentina, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina https://doi.org/10.17912/micropub.biology.000504 en

    Data: Vayda et al 2018, AoB PLANTS

    No full text
    Information and files associated to the paper Vayda et al 2018, AoB PLANT

    Data: Authier et al 2021, microPublication

    No full text
    Information and files associated to the paper Authier et al 2021, microPublicatio

    Non-stressful temperature changes affect intergenerational phenotypic plasticity across the life cycle of Arabidopsis thaliana plants

    No full text
    Background and Aims. Plants have adapted their phenology to respond to seasonal changes. Even though much is known about how seasonality regulates developmental transitions within generations, intergenerational effects of non-stressful environmental changes are just beginning to be unveiled. This study aimed to evaluate the effects of ambient temperature changes on the expression of intergenerational plasticity in key developmental traits of Arabidopsis thaliana plants. Methods. We grew Columbia-0 plants in two contrasting temperature environments (18 and 24°C) during their whole life cycles, or the combination of those before and after bolting (18-24°C and 24-18°C) across two generations. We recorded seed germination, flowering time and reproductive biomass production for the second generation, and seed area of the third generation. Key Results. The environment during the whole life cycle of the first-generation of plants, even that experienced before flowering, influenced the germination response and flowering time of the second generation. These effects showed opposing directions in a pattern dependent on the life stage experiencing the cue in the first-generation. On the contrary, reproductive biomass production depended on the environment of the immediate generation. Finally, seed area of the third generation was influenced positively by correlated environments across generations. Conclusions. Our results suggest that non-stressful environmental changes affect the expression of key developmental traits across generations, although those changes can have contrasting effects depending on the parental and grandparental life stage that perceives the cue. Thus, intergenerational effects in response to non-stressful cues may influence the expression of life history traits and potential adaptation of future generations

    Photoperiod throughout the maternal life cycle, not photoperiod during seed imbibition, influences germination in Arabidopsis thaliana

    No full text
    PREMISE OF THE STUDY: Plants adjust their phenology in response to seasonal cues experienced both by their parents and by themselves, and coordinating responses to these cues is necessary for expressing adaptive phenology. We investigated how cues are integrated across time to influence an important progeny phenotype, i.e., seed germination. METHODS: We used Arabidopsis thaliana to investigate how the photoperiod experienced by maternal parents and by progeny influences seed germination. We examined when maternal photoperiod effects on germination are imposed and how long they persist in progeny. KEY RESULTS: The photoperiod experienced by maternal plants more strongly influenced germination than the photoperiod experienced during seed imbibition. In addition, the photoperiod experienced at the prereproductive stage frequently influenced germination as strongly as that experienced during reproduction. In general, seeds from plants grown under short days had higher seed germination percentages than seeds from plants grown in longer days. These maternal effects diminished with after-ripening, but reappeared in seeds induced into secondary dormancy. CONCLUSIONS: We found no evidence that the effect of photoperiod systematically attenuates in proportion to the time that elapsed between the cue and the timing of seed germination. Moreover, more recently experienced cues did not override the effects of cues experienced previously. Instead, specific sequences of photoperiods experienced at the prereproductive and reproductive stages appear to influence germination behavior.Fil: Imaizumi, Toshiyuki. University of Duke; Estados UnidosFil: Auge, Gabriela Alejandra. University of Duke; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Donohue, Kathleen. University of Duke; Estados Unido

    Hybrid-derived weedy rice maintains adaptive combinations of alleles associated with seed dormancy

    No full text
    Plant hybridization is a pathway for the evolution of adaptive traits. However, hybridization between adapted and nonadapted populations may affect the persistence of combinations of adaptive alleles evolved through natural selection. Seed dormancy is an adaptive trait for weedy rice because it regulates the timing of seed germination and the persistence of the soil seed bank. Hybridization between weedy and cultivated rice has been confirmed with an adaptive introgression of deep seed dormancy alleles from cultivated rice. Here, we explored the influence of hybridization on the conservation of adaptive allele combinations by evaluating natural variation and genetic structure in seed dormancy-associated genomic regions. Based on sequence variation in the genomic regions associated with seed dormancy, hybrid-derived weedy rice strains maintained most of the adaptive combinations for this trait observed in the parental weedy rice, despite equal representation of the parental weedy and cultivated rice in the whole genome sequence. Moreover, hybrid-derived weedy rice strains were more dormant than their parental weedy rice strains, and this trait was strongly influenced by the environment. This study suggests that hybridization between weedy rice (adaptive allelic combinations for seed dormancy) and cultivated rice (nonadaptive combinations) generates weedy rice strains expressing deep seed dormancy caused by genome stabilization through the removal of alleles derived from cultivated rice, in addition to the adaptive introgression of deep seed dormancy alleles derived from cultivated rice. Thus, hybridization between adapted and nonadapted populations appears to be reinforcing the trajectory towards the evolution of adaptive traits.Fil: Imaizumi, Toshiyuki. National Agriculture And Food Organization. Central Region Agricultural Research Center.; JapónFil: Kawahara, Yoshihiro. National Agriculture And Food Organization. Central Region Agricultural Research Center.; JapónFil: Auge, Gabriela Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Effect of FLOWERING LOCUS C on seed germination depends on dormancy

    No full text
    FLOWERING LOCUS C (FLC) has a major regulatory role in the timing of flowering in Arabidopsis thaliana (L.) Heynh. and has more recently been shown to influence germination. Here, we investigated the conditions under which FLC influences germination, and demonstrated that its effect depends on the level of primary and secondary dormancy and the temperature of seed imbibition. We tested the germination response of genotypes with different degrees of FLC activity over the course of after-ripening and after secondary dormancy induction by hot stratification. Genotypes with high FLC-activity showed higher germination; this response was greatest when seeds exhibited primary dormancy or were induced into secondary dormancy by hot stratification. In this study, which used less dormant seeds, the effect of FLC was more evident at 22 C, the less permissive germination temperature, than at 10 C, in contrast to prior published results that used more dormant seeds. Thus, because effects of FLC variation depend on dormancy, and because the range of temperature that permits germination also depends on dormancy, the temperature at which FLC affects germination can also vary with dormancy. Finally, we document that the effect of FLC can depend on FRIGIDA and that FRIGIDA itself appears to influence germination. Thus, pleiotropy between germinationFil: Blair, Logan. University of Duke; Estados UnidosFil: Auge, Gabriela Alejandra. University of Duke; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University of California at Davis; Estados UnidosFil: Donohue, Kathleen. University of Duke; Estados Unido
    corecore