96 research outputs found

    Light scalar fields in a dark universe : models of inflation, dark energy and dark matter = Campos escalares ligeros en un universo oscuro : modelos de inflación, energía oscura y materia oscura /

    Get PDF
    Consultable des del TDXTítol obtingut de la portada digitalitzadaLa teoría científica de más éxito hoy en día, sobre el origen y la evolución del universo, es conocida como el modelo estándar del Big Bang, el cual es una de las construcciones intelectuales más ambiciosas de la humanidad. Se basa en dos ramas bien consolidadas de la física teórica, a saber, la teoría de la Relatividad General y el Modelo Estándar de la física de partículas, y es capaz de hacer predicciones sólidas, como la expansión del universo, la existencia del fondo de radiación de microondas y las abundancias relativas de los elementos ligeros. Algunas de las predicciones teóricas ya han sido confirmadas por observaciones muy precisas. Según la cosmología estándar del Big Bang, el universo primitivo consistía en un plasma muy caliente y denso que se expandió y se enfrió continuamente hasta el presente, dando paso a una serie de transiciones de fase cosmológicas, donde las teorías que describen el universo en cada fase son distintas. Dado que las energías del universo primitivo fueron mucho más altas que las alcanzadas en experimentos terrestres, el estudio del universo primitivo podría ofrecernos importantes informaciones sobre nuevas interacciones y nuevas partículas, abriendo nuevas direcciones para la extensión del Modelo Estándar de la física de partículas. Como ya he mencionado anteriormente, durante la expansión del universo ocurrieron varias transiciones de fase que dejaron su huella sobre el estado presente del universo. Las observaciones sugieren que durante una de estas transiciones de fase, el universo primitivo sufrió un periodo de expansión acelerada, conocido como inflación. Aunque no forma parte de la cosmología estándar, la inflación es capaz de solucionar de una manera simple y elegante casi todos los problemas relacionados con el modelo estándar del Big Bang, y debería tenerse en cuenta en cualquier extensión posible de la teoría. Las observaciones también revelan la existencia de dos formas de energía desconocidas, a saber, materia oscura y energía oscura. La materia oscura es una forma de materia no relativista y no bariónica, que solamente puede ser detectada indirectamente, mediante su interacción con la materia normal. La energía oscura es un tipo de sustancia con presión negativa, que empezó a dominar recientemente y que es la causa de la aceleración de la expansión del universo. En esta tesis doctoral presento varios modelos originales propuestos para resolver algunos de los problemas de la cosmología estándar, como posibles extensiones del modelo del Big Bang. Algunos de estos modelos introducen nuevas simetrías y partículas con el fin de explicar la inflación y la energía oscura y/o la materia oscura en una descripción unificada. Uno de los modelos es propuesto para explicar la energía oscura del universo, a través de un nuevo campo escalar que oscila en un potencial.The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations. According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics. As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe. In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential. The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations. According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics. As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe. In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential

    Imprint of spatial curvature on inflation power spectrum

    Get PDF
    If the universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the CMB anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the WMAP three year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω1>0\Omega-1 >0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large ll. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.Comment: 17 pages, 4 figures, revtex4; section on comparison with WMAP3 data adde

    Scalar Field Oscillations Contributing to Dark Energy

    Get PDF
    We use action-angle variables to describe the basic physics of coherent scalar field oscillations in the expanding universe. These analytical mechanics methods have some advantages, like the identification of adiabatic invariants. As an application, we show some instances of potentials leading to equations of state with p<ρ/3p<-\rho/3, thus contributing to the dark energy that causes the observed acceleration of the universe.Comment: 17 pages, 6 figures, Latex file. Sec.II reduced, discussion on sound speed added in Sec.IV, new references added. Accepted for publication in Physical Review

    Recent Trends on Liquid Air Energy Storage: A Bibliometric Analysis

    Get PDF
    The increasing penetration of renewable energy has led electrical energy storage systems to have a key role in balancing and increasing the e ciency of the grid. Liquid air energy storage (LAES) is a promising technology, mainly proposed for large scale applications, which uses cryogen (liquid air) as energy vector. Compared to other similar large-scale technologies such as compressed air energy storage or pumped hydroelectric energy storage, the use of liquid air as a storage medium allows a high energy density to be reached and overcomes the problem related to geological constraints. Furthermore, when integrated with high-grade waste cold/waste heat resources such as the liquefied natural gas regasification process and hot combustion gases discharged to the atmosphere, LAES has the capacity to significantly increase the round-trip efficiency. Although the first document in the literature on the topic of LAES appeared in 1974, this technology has gained the attention of many researchers around the world only in recent years, leading to a rapid increase in a scientific production and the realization of two system prototype located in the United Kingdom (UK). This study aims to report the current status of the scientific progress through a bibliometric analysis, defining the hotspots and research trends of LAES technology. The results can be used by researchers and manufacturers involved in this entering technology to understand the state of art, the trend of scientific production, the current networks of worldwide institutions, and the authors connected through the LAES. Our conclusions report useful advice for the future research, highlighting the research trend and the current gaps.This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31—MCIU/AEI/FEDER, UE). This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at the University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group GREiA (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work was partially supported by ICREA under the ICREA Academia program
    corecore