28,251 research outputs found

    Emergence of inflationary perturbations in the CSL model

    Get PDF
    The inflationary paradigm is the most successful model that explains the observed spectrum of primordial perturbations. However, the precise emergence of such inhomogeneities and the quantum-to-classical transition of the perturbations has not yet reached a consensus among the community. The Continuous Spontaneous Localization model (CSL), in the cosmological context, might be used to provide a solution to the mentioned issues by considering a dynamical reduction of the wave function. The CSL model has been applied to the inflationary universe before and different conclusions have been obtained. In this letter, we use a different approach to implement the CSL model during inflation. In particular, in addition to accounting for the quantum-to-classical transition, we use the CSL model to generate the primordial perturbations, that is, the dynamical evolution provided by the CSL model is responsible for the transition from a homogeneous and isotropic initial state to a final one lacking such symmetries. Our approach leads to results that can be clearly distinguished from preceding works. Specifically, the scalar and tensor power spectra are not time-dependent, and retains the amplification mechanism of the CSL model. Moreover, our framework depends only on one parameter (the CSL parameter) and its value is consistent with cosmological and laboratory observations.Comment: 14 pages. Final version. To be published in EPJ

    The Hidden Costs: A Case Study for Sustainable Development Studies

    Get PDF

    Quasi-matter bounce and inflation in the light of the CSL model

    Get PDF
    The Continuous Spontaneous Localization (CSL) model has been proposed as a possible solution to the quantum measurement problem by modifying the Schr\"{o}dinger equation. In this work, we apply the CSL model to two cosmological models of the early Universe: the matter bounce scenario and slow roll inflation. In particular, we focus on the generation of the classical primordial inhomogeneities and anisotropies that arise from the dynamical evolution, provided by the CSL mechanism, of the quantum state associated to the quantum fields. In each case, we obtained a prediction for the shape and the parameters characterizing the primordial spectra (scalar and tensor), i.e. the amplitude, the spectral index and the tensor-to-scalar ratio. We found that there exist CSL parameter values, allowed by other non-cosmological experiments, for which our predictions for the angular power spectrum of the CMB temperature anisotropy are consistent with the best fit canonical model to the latest data released by the Planck Collaboration.Comment: 27 pages, including 6 figures, 2 tables and one Appendix. Final version. Accepted in EPJ

    New Mexico: Round 1 - State-Level Field Network Study of the Implementation of the Affordable Care Act

    Get PDF
    This report is part of a series of 21 state and regional studies examining the rollout of the ACA. The national network -- with 36 states and 61 researchers -- is led by the Rockefeller Institute of Government, the public policy research arm of the State University of New York, the Brookings Institution, and the Fels Institute of Government at the University of Pennsylvania.New Mexico is no longer one of the key battleground states as it has moved more Democratic in recent presidential races, a trend driven by Latino population growth and a shift to the Democratic Party among that population. During the 2013 legislative session, Senate Bill 221 passed and authorized the establishment of a state-run New Mexico Health Insurance Exchange (NMHIX). On March 28, 2013, the governor signed Senate Bill 221 into law. Another major ACA-related decision involved Medicaid. Given the aggressive opposition from other Republican governors to the ACA, Martínez surprised some observers when she announced in early 2013 that New Mexico would expand Medicaid as long as the federal government provided the funding for the initial expansion

    Neutrinoless ββ\beta\beta decay nuclear matrix elements in an isotopic chain

    Full text link
    We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, Mcl2νM^{2\nu}_{\mathrm{cl}}, display a constant proportionality with respect to the Gamow-Teller part of the neutrinoless NME, MGT0νM^{0\nu}_{\mathrm{GT}}. This opens the possibility of determining the MGT0νM^{0\nu}_{\mathrm{GT}} matrix elements from β∓\beta^{\mp} Gamow-Teller strength functions. Finally, the interconnected role of deformation, pairing, configuration mixing and shell effects in the NMEs is discussed
    • …
    corecore