25,279 research outputs found

    Macroscopic Observables Detecting Genuine Multipartite Entanglement and Partial Inseparability in Many-Body Systems

    Full text link
    We show a general approach for detecting genuine multipartite entanglement (GME) and partial inseparability in many-body-systems by means of macroscopic observables (such as the energy) only. We show that the obtained criteria, the "GME gap" and "the k-entanglement gap", detect large areas of genuine multipartite entanglement and partial entanglement in typical many body states, which are not detected by other criteria. As genuine multipartite entanglement is a necessary property for several quantum information theoretic applications such as e.g. secret sharing or certain kinds of quantum computation, our methods can be used to select or design appropriate condensed matter systems.Comment: 4 pages, 3 figures, published version, title extende

    Adaptive and demographic responses of plankton populations to environmental change

    Get PDF
    Because of their large population sizes, short generation times, and clonal mode of propagation, microorganisms should often be the first members of a community to respond evolutionarily to temporal changes in the environment. Because the planktonic microbial community directly or indirectly influences all other members of aquatic ecosystems, it is useful to have a general theory for the magnitude and limits of such response. Models are presented for the expected dynamics of evolutionary change for the mean and variance of a quantitative character under natural selection toward a fixed or a moving optimum. It is also shown how the rate of population growth is related to the phenotypic composition of the population and the selective aspects of the environment. These models, which lead to the identification of extinction thresholds for the rate of environmental change beyond which a population cannot maintain itself, provide a heuristic basis for understand-ing the response of ecosystems to environmental perturbations. The analyses also indicate that clones of microorganisms isolated into novel laboratory environments are likely to undergo sub-stantial evolutionary change over periods of a few hundred days, which raises questions about the utility of such cultures for inferring ecological properties of natural populations

    Asteroseismology of Massive Stars : Some Words of Caution

    Full text link
    Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their "quiet" main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions.Comment: 10 pages, 5 figures, IAU Symposium 307, New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, G. Meynet, C. Georgy, J.H. Groh & Ph. Stee, ed

    A study of separability criteria for mixed three-qubit states

    Full text link
    We study the noisy GHZ-W mixture. We demonstrate some necessary but not sufficient criteria for different classes of separability of these states. It turns out that the partial transposition criterion of Peres and the criteria of G\"uhne and Seevinck dealing with matrix elements are the strongest ones for different separability classes of this 2 parameter state. As a new result we determine a set of entangled states of positive partial transpose.Comment: 18 pages, 10 figures, PRA styl

    Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    Get PDF
    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes

    Strong Coupling Theory for Interacting Lattice Models

    Full text link
    We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling perspective represents the natural framework for a generalization of the dynamical mean field theory (DMFT). The main result of this analysis is twofold: 1) It provides the tools for a unified treatment of any non-local contribution to the Hamiltonian. Within our scheme, non-local terms such as hopping terms, spin-spin interactions, or non-local Coulomb interactions are treated on equal footing. 2) By performing a detailed strong-coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we develop a generalized expansion around the atomic limit in terms of the coupling constants for the non-local contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish the equations for a generalized dynamical mean-field theory (G-DMFT). Second, we formulate the theory in terms of a generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Senechal, and Tremblay, we present our scheme in the language of a perturbation theory for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling quantities within a standard perturbative picture.Comment: Revised Version, 17 pages, 5 figure

    Singlet-triplet splitting, correlation and entanglement of two electrons in quantum dot molecules

    Full text link
    Starting with an accurate pseudopotential description of the single-particle states, and following by configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs quantum dot-molecules, we show how simpler, popularly-practiced approximations, depict the basic physical characteristics including the singlet-triplet splitting, degree of entanglement (DOE) and correlation. The mean-field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation, incorrectly identify the ground state symmetry and give inaccurate values for the singlet-triplet splitting and the DOE. The Hubbard model gives qualitatively correct results for the ground state symmetry and singlet-triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively correct ground state symmetry and singlet-triplet splitting only for rather large inter-dot separations, but it greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect.Comment: 13 pages, 9 figures. To appear in Phys. Rev.

    The role of short periodic orbits in quantum maps with continuous openings

    Get PDF
    We apply a recently developed semiclassical theory of short periodic orbits to the continuously open quantum tribaker map. In this paradigmatic system the trajectories are partially bounced back according to continuous reflectivity functions. This is relevant in many situations that include optical microresonators and more complicated boundary conditions. In a perturbative regime, the shortest periodic orbits belonging to the classical repeller of the open map - a cantor set given by a region of exactly zero reflectivity - prove to be extremely robust in supporting a set of long-lived resonances of the continuously open quantum maps. Moreover, for step like functions a significant reduction in the number needed is obtained, similarly to the completely open situation. This happens despite a strong change in the spectral properties when compared to the discontinuous reflectivity case.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1604.0181

    Multi-Partite Entanglement Inequalities via Spin Vector Geometry

    Full text link
    We introduce inequalities for multi-partite entanglement, derived from the geometry of spin vectors. The criteria are constructed iteratively from cross and dot products between the spins of individual subsystems, each of which may have arbitrary dimension. For qubit ensembles the maximum violation for our inequalities is larger than that for the Mermin-Klyshko Bell inequalities, and the maximally violating states are different from Greenberger-Horne-Zeilinger states. Our inequalities are violated by certain bound entangled states for which no Bell-type violation has yet been found.Comment: 4 pages, 2 tables, 1 figure. A truncated version is published in Physical Review Letters, volume 95 issue 18, 180402 (October 2005

    Estimating Prices for R&D Investment in the 2007 R&D Satellite Account

    Get PDF
    This paper is part of a series that provides the details behind the Bureau of Economic Analysis's (BEA) satellite account on research and development (R&D) activity. In the current work, the focus is on the theoretical underpinnings and empirical implementation of the R&D price index used to construct real R&D output. We examine four alternative price indexes. For each, we lay out the theoretical assumptions needed for the approach to be valid and examine how well the approach works in practice. We then compare these four alternative price indexes and explain the choice of our preferred price index.
    • …
    corecore