2,532 research outputs found

    New Keynesian Phillips Curves and potential identification failures: a Generalized Empirical Likelihood analysis

    Get PDF
    In this paper, we examine parameter identification in the hybrid specification of the New Keynesian Phillips Curve proposed by Gali and Gertler [Gali, J., Gertler, M., 1999. Inflation dynamics: a structural econometric analysis. Journal of Monetary Economics 44, 195-222]. We employ recently developed moment conditions inference procedures, which provide a more efficient and reliable econometric framework for the analysis of the NKPC. In particular, we address the issue of parameter identification, obtaining robust confidence sets for the model's parameters. Our results cast serious doubts on the empirical validity of the NKPC

    Cost estimation of rail power conditioner topologies based on indirect modular multilevel converter in v/v and scott power transformers

    Get PDF
    This paper presents a cost estimation study for several rail power conditioner (RPC) topologies based on an indirect modular multilevel converter (MMC), in which these topologies are combined with V/V or Scott power transformers. The RPC topologies under interest in this paper are: the RPC based on a full-bridge MMC (RPC based on MMC4), the RPC based on two-phase three-wire MMC (RPC based on MMC3), and the RPC based on a half-bridge MMC (RPC based on MMC2). These RPC systems operate at medium voltage levels in the interconnection to 25 kV-50 Hz catenary sections to solve power quality problems, such as the current harmonics and the negative sequence components (NSCs) of currents. Along the paper are described the V/V and the Scott power transformers, the RPC main architectures, and the estimated cost of implementation for each RPC topology considering V/V or Scott implementations. As main contribution, the presented results could help in the selection procedure of the RPC topology, giving the best economical solution according to the used power transformer (V/V or Scott).This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT within the Project Scope DAIPESEV – Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. Mohamed Tanta is supported by the doctoral scholarship with a reference PD/BD/127815/2016 granted by the Portuguese FCT agency

    Optical/NIR stellar absorption and emission-line indices from luminous infrared galaxies

    Get PDF
    We analyze a set of optical-to-near-infrared long-slit nuclear spectra of 16 infrared-luminous spiral galaxies. All of the studied sources present H2_2 emission, which reflects the star-forming nature of our sample, and they clearly display H I emission lines in the optical. Their continua contain many strong stellar absorption lines, with the most common features due to Ca I, Ca II, Fe I, Na I, Mg I, in addition to prominent absorption bands of TiO, VO, ZrO, CN and CO. We report a homogeneous set of equivalent width (EW) measurements for 45 indices, from optical to NIR species for the 16 star-forming galaxies as well as for 19 early type galaxies where we collected the data from the literature. This selected set of emission and absorption-feature measurements can be used to test predictions of the forthcoming generations of stellar population models. We find correlations among the different absorption features and propose here correlations between optical and NIR indices, as well as among different NIR indices, and compare them with model predictions. While for the optical absorption features the models consistently agree with the observations,the NIR indices are much harder to interpret. For early-type spirals the measurements agree roughly with the models, while for star-forming objects they fail to predict the strengths of these indices.Comment: accepted for publication in MNRA

    Superfluidity of Dipolar Excitons in a Double Layer of α -T3 with a Mass Term

    Full text link
    We predict Bose-Einstein condensation and superfluidity of dipolar excitons, formed by electron-hole pairs in spatially separated gapped hexagonal α − T3 (GHAT3) layers. In the α − T3 model, the AB-honeycomb lattice structure is supplemented with C atoms located at the centers of the hexagons in the lattice. We considered the α − T3 model in the presence of a mass term which opens a gap in the energy-dispersive spectrum. The gap opening mass term, caused by a weak magnetic field, plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system. The band structure of GHAT3 monolayers leads to the formation of two distinct types of excitons in the GHAT3 double layer. We consider two types of dipolar excitons in double-layer GHAT3: (a) “A excitons”, which are bound states of electrons in the conduction band (CB) and holes in the intermediate band (IB), and (b) “B excitons”, which are bound states of electrons in the CB and holes in the valence band (VB). The binding energy of A and B dipolar excitons is calculated. For a two-component weakly interacting Bose gas of dipolar excitons in a GHAT3 double layer, we obtain the energy dispersion of collective excitations, the sound velocity, the superfluid density, and the mean-field critical temperature Tc for superfluidity

    Aryl-capped lysine-dehydroamino acid dipeptide supergelators as potential drug release systems

    Get PDF
    Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping group are particularly attractive alternatives for minimalistic low molecular weight hydrogelators. Peptides with low critical gelation concentrations (CGCs) are especially desirable, as the low weight percentage required for gelation makes them more cost-effective and reduces toxicity. In this work, three dehydrodipeptides were studied for their self-assembly properties. The results showed that all three dehydrodipeptides can form self-standing hydrogels with very low critical gelation concentrations (0.050.20 wt%) using a pH trigger. Hydrogels of all three dehydrodipeptides were characterised by scanning tunnelling emission microscopy (STEM), rheology, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Molecular modelling was performed to probe the structural patterns and interactions. The cytotoxicity of the new compounds was tested using human keratinocytes (HaCaT cell line). In general, the results suggest that all three compounds are non-cytotoxic, although one of the peptides shows a small impact on cell viability. In sustained release assays, the effect of the charge of the model drug compounds on the rate of cargo release from the hydrogel network was evaluated. The hydrogels provide a sustained release of methyl orange (anionic) and ciprofloxacin (neutral), while methylene blue (cationic) was retained by the network.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019), IPC (UIDP/CTM/05256/2020 and UIDB/05256/2020) and REQUIMTE/LAQV (UIDB/50006/2020). L.H. acknowledges grant CEECINST/00156/2018. FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowl edged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER 029015). TGC thanks FCT under the scope of the strategic funding of UIDB/04469/2020 unit, and LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020.info:eu-repo/semantics/publishedVersio

    Object-oriented Programming Laws for Annotated Java Programs

    Full text link
    Object-oriented programming laws have been proposed in the context of languages that are not combined with a behavioral interface specification language (BISL). The strong dependence between source-code and interface specifications may cause a number of difficulties when transforming programs. In this paper we introduce a set of programming laws for object-oriented languages like Java combined with the Java Modeling Language (JML). The set of laws deals with object-oriented features taking into account their specifications. Some laws deal only with features of the specification language. These laws constitute a set of small transformations for the development of more elaborate ones like refactorings

    Bothrops jararaca Peptide with Anti-Hypertensive Action Normalizes Endothelium Dysfunction Involved in Physiopathology of Preeclampsia

    Get PDF
    Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia

    Bothrops jararaca Peptide with Anti-Hypertensive Action Normalizes Endothelium Dysfunction Involved in Physiopathology of Preeclampsia

    Get PDF
    Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia

    Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production

    Get PDF
    Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules
    corecore