17,094 research outputs found

    Decoupling method for dynamical mean field theory calculations

    Full text link
    In this paper we explore the use of an equation of motion decoupling method as an impurity solver to be used in conjunction with the dynamical mean field self-consistency condition for the solution of lattice models. We benchmark the impurity solver against exact diagonalization, and apply the method to study the infinite UU Hubbard model, the periodic Anderson model and the pdpd model. This simple and numerically efficient approach yields the spectra expected for strongly correlated materials, with a quasiparticle peak and a Hubbard band. It works in a large range of parameters, and therefore can be used for the exploration of real materials using LDA+DMFT.Comment: 30 pages, 7 figure

    Singlet-triplet splitting, correlation and entanglement of two electrons in quantum dot molecules

    Full text link
    Starting with an accurate pseudopotential description of the single-particle states, and following by configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs quantum dot-molecules, we show how simpler, popularly-practiced approximations, depict the basic physical characteristics including the singlet-triplet splitting, degree of entanglement (DOE) and correlation. The mean-field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation, incorrectly identify the ground state symmetry and give inaccurate values for the singlet-triplet splitting and the DOE. The Hubbard model gives qualitatively correct results for the ground state symmetry and singlet-triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively correct ground state symmetry and singlet-triplet splitting only for rather large inter-dot separations, but it greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect.Comment: 13 pages, 9 figures. To appear in Phys. Rev.

    Charge order induced by electron-lattice interaction in NaV2O5

    Full text link
    We present Density Matrix Renormalization Group calculations of the ground-state properties of quarter-filled ladders including static electron-lattice coupling. Isolated ladders and two coupled ladders are considered, with model parameters obtained from band-structure calculations for α′\alpha^\prime-NaV2_2O5_5. The relevant Holstein coupling to the lattice causes static out-of-plane lattice distortions, which appear concurrently with a charge-ordered state and which exhibit the same zigzag pattern observed in experiments. The inclusion of electron-lattice coupling drastically reduces the critical nearest-neighbor Coulomb repulsion VcV_c needed to obtain the charge-ordered state. No spin gap is present in the ordered phase. The charge ordering is driven by the Coulomb repulsion and the electron-lattice interaction. With electron-lattice interaction, coupling two ladders has virtually no effect on VcV_c or on the characteristics of the charge-ordered phase. At V=0.46\eV, a value consistent with previous estimates, the lattice distortion, charge gap, charge order parameter, and the effective spin coupling are in good agreement with experimental data for NaV2_2O_5$.Comment: 7 pages, 9 figure

    The Fe XXII I(11.92 A)/I(11.77 A) Density Diagnostic Applied to the Chandra High Energy Transmission Grating Spectrum of EX Hydrae

    Full text link
    Using the Livermore X-ray Spectral Synthesizer, which calculates spectral models of highly charged ions based primarily on HULLAC atomic data, we investigate the temperature, density, and photoexcitation dependence of the I(11.92 A)/I(11.77 A) line ratio of Fe XXII. We find that this line ratio has a critical density n_c \approx 5x10^13 cm^-3, is approximately 0.3 at low densities and 1.5 at high densities, and is very insensitive to temperature and photoexcitation, so is a useful density diagnostic for sources like magnetic cataclysmic variables in which the plasma densities are high and the efficacy of the He-like ion density diagnostic is compromised by the presence of a bright ultraviolet continuum. Applying this diagnostic to the Chandra High Energy Transmission Grating spectrum of the intermediate polar EX Hya, we find that the electron density of its T_e \approx 12 MK plasma is n_e = 1.0^{+2.0}_{-0.5} x 10^14 cm^-3, orders of magnitude greater than that typically observed in the Sun or other late-type stars.Comment: 11 pages including 3 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2003 April 3 for publication in The Astrophysical Journa

    Teleportation in a noisy environment: a quantum trajectories approach

    Full text link
    We study the fidelity of quantum teleportation for the situation in which quantum logic gates are used to provide the long distance entanglement required in the protocol, and where the effect of a noisy environment is modeled by means of a generalized amplitude damping channel. Our results demonstrate the effectiveness of the quantum trajectories approach, which allows the simulation of open systems with a large number of qubits (up to 24). This shows that the method is suitable for modeling quantum information protocols in realistic environments.Comment: 9 pages, 2 figure
    • …
    corecore