7 research outputs found

    A clinical feasibility study to evaluate the safety and efficacy of PEOT/PBT implants for human donor site filling during mosaicplasty

    Get PDF
    Mosaicplasty has become a well-accepted treatment modality for articular cartilage lesions in the knee. Postoperative bleeding remains potentially concerning. This study evaluates the porous poly(ethylene oxide)terephthalate/poly(butylene terephthalate) (PEOT/PBT) implants used for donor site filling. Empty donor sites were the controls. After 9 months, MRI, macroscopical and histological analysis were carried out. Treated defects did not cause postoperative bleeding. No adverse events or inflammatory response was observed. PEOT/PBT implants were well integrated. Empty controls occasionally showed protrusion of repair tissue at the defect margins. Surface stiffness was minimally improved compared to controls. Existing polymer fragments indicated considerable biodegradation. Histological evaluation of the filled donor sites revealed congruent fibrocartilaginous surface repair with proteoglycan-rich domains and subchondral cancellous bone formation with interspersed fibrous tissue in all implanted sites. The PEOT/PBT implants successfully reduce donor site morbidity and postoperative bleeding after mosaicplasty

    Isolated Femoral Shaft Fracture in Wakeboarding and Review of the Literature

    Get PDF
    Introduction. Wakeboarding is an extreme sport that has shown increasing popularity in recent years, with an estimated 2.9 million participants in 2017. Due to this trend, injuries related to this sport are likely to become more common. Isolated femoral shaft are rare; however, they occur much more frequently in youth as a result of high velocity events, such as dashboard-related injuries. Few studies have addressed injuries related to wakeboarding, and of those that have, most have reported on muscle injuries, ligament ruptures, and sprains. Due to the dearth in literature, we want to present two cases of isolated noncontact femoral shaft fractures that resulted from wakeboarding. Case Presentation. Two 28-year-old, otherwise healthy, wakeboarders—patient A, male, and patient B, female—presented to our Department of Orthopaedics and Sports Medicine with isolated femoral shaft fractures. Both were admitted due to wakeboard-related noncontact injuries, where patient A fell while performing a sit-down start during cable wakeboarding and patient B after attempting a wake-jump. Both patients were being pulled by motorboats at roughly 40 km/h. After clinical examination and radiography, left spiral (AO classification: 32-A1.2) (patient A) and right-sided bending, wedge (AO classification 32-B2.2) (patient B) isolated femoral shaft fractures were diagnosed. No concomitant injuries were reported. For treatment, long reamed locked nails were applied, while the patients were under spinal anaesthesia. Physiotherapy was prescribed postoperatively. Patient A returned to wakeboarding 155 days after the surgery, and patient B returned after approximately half a year. Conclusion. This case series shows that even in noncontact sports such as wakeboarding, high-energy forces applied to the femur can cause isolated femoral shaft fractures. Despite multiple reports in various sports of stress fractures of the femur, there are few publications of direct trauma

    Immune phenotype in children with therapy-naïve remitted and relapsed Crohn’s disease

    Get PDF
    AIM: To characterize the prevalence of subpopulations of CD4+ cells along with that of major inhibitor or stimulator cell types in therapy-naïve childhood Crohn’s disease (CD) and to test whether abnormalities of immune phenotype are normalized with the improvement of clinical signs and symptoms of disease

    Rational design of balanced dual-targeting antibiotics with limited resistance

    No full text
    Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections
    corecore