24 research outputs found

    The impact of the Bohemian Spur on the cooling and exhumation pattern of the Eastern Alpine wedge

    Get PDF
    Fold and thrust belt dynamics and architecture may largely be impacted by the geometry of the overridden basement. The Bohemian Spur, the subcrop extension of the Bohemian massif, guided thrust propagation leading to the arcuate shape of the orogen and a narrowing of the Molasse Basin at the transition to the between the W-E trending Eastern Alps and the SW-NE trending Western Carpathians. Thermochronological studies in the Eastern Alps were mainly focused on the core of the collisional orogen, where deformation has been most prominent. Further to the east, some FT work is concentrated along fault zones but thermochronometers with lower closure temperatures have hardly been applied to higher elements of the nappe pile. Due to the scarcity of the dataset and preferential application of fission track dating uppermost crustal cooling below ca. 80 °C remains undetected. In this study we present new apatite (U-Th)/He and apatite fission track data from clastic units of the Rhenodanubian Flysch zone and the Northern Calcareous Alps. We find reset ages, that monitor a so far un(der)appreciated phase of prominent Late Oligocene to Miocene cooling. Thermal modeling of age data from the flysch samples reveals rapid Early Miocene cooling at rates of up to 40 °C/Ma between ca. 20 and 15 Ma. We propose a buttressing effect of the underlying tectonically structured eastern rim of the Bohemian Spur to be the driving mechanism for this phase of intensified exhumation. Our tectonic model (Fig. 1a) invokes contractional reactivation of pre-existing normal faults inherited from Penninic continental rifting. This positive inversion led to the shortening of the Jurassic half-graben infill and its extrusion as a major fold. Thermochronological data and thermal modeling of data from samples in the Lunz nappe of the Northern Calcareous Alps nappe pile indicate less punctuated cooling and exhumation. Modeling defines an increase of cooling rates at the latest at ca. 27 to 25 Ma, i.e., earlier than in the Flysch samples. Cooling occurred at a much lower rate of 3 to 6 °C/Ma and was synchronous with northward movement of the deformation front. In our tectonic model (Fig. 1b), we propose a staircase pattern that influences wedge dynamics: The topographically segmented downgoing plate leads to less localized and more distributed deformation invoking a broader area of uplift than the spatially focused uplift of the Flysch samples. Wedge propagation is initially inhibited or retarded by the relief of the basement. The ongoing northward movement of the propagating wedge is compensated through deep duplexing of the autochthonous foreland sequence. When calling upon deep-seated processes to explain the exhumation pattern the buttressing effect needs to be taken into account. Early Miocene drainage pattern reorganization in the Molasse Basin is proposed to be a consequence of uplift induced by the subcrop promontory

    Mediterranean-Black Sea gateway exchange: Scientific drilling workshop on the BlackGate project

    Get PDF
    The MagellanPlus workshop "BlackGate"addressed fundamental questions concerning the dynamic evolution of the Mediterranean-Black Sea (MBS) gateway and its palaeoenvironmental consequences. This gateway drives the Miocene-Quaternary circulation patterns in the Black Sea and governs its present status as the world's largest example of marine anoxia. The exchange history of the MBS gateway is poorly constrained because continuous Pliocene-Quaternary deposits are not exposed on land adjacent to the Black Sea or northern Aegean. Gateway exchange is controlled by climatic (glacio-eustatic-driven sea-level fluctuations) and tectonic processes in the catchment as well as tectonic propagation of the North Anatolian Fault Zone (NAFZ) in the gateway area itself. Changes in connectivity trigger dramatic palaeoenvironmental and biotic turnovers in both the Black Sea and Mediterranean domains. Drilling a Messinian to Holocene transect across the MBS gateway will recover high-amplitude records of continent-scale hydrological changes during glacial-interglacial cycles and allow us to reconstruct marine and freshwater fluxes, biological turnover events, deep biospheric processes, subsurface gradients in primary sedimentary properties, patterns and processes controlling anoxia, chemical perturbations and carbon cycling, growth and propagation of the NAFZ, the timing of land bridges for Africa and/or Asia-Europe mammal migration, and the presence or absence of water exchange during the Messinian salinity crisis. During thorough discussions at the workshop, three key sites were selected for potential drilling using a mission-specific platform (MSP): one on the Turkish margin of the Black Sea (Arkhangelsky Ridge, 400mb.s.f., metres below the seafloor), one on the southern margin of the Sea of Marmara (North Imrali Basin, 750mb.s.f.), and one in the Aegean (North Aegean Trough, 650mb.s.f.). All sites target Quaternary oxic-anoxic marl-sapropel cycles. Plans include recovery of Pliocene lacustrine sediments and mixed marine-brackish Miocene sediments from the Black Sea and the Aegean. MSP drilling is required because the JOIDES Resolution cannot pass under the Bosporus bridges. The wider goals are in line with the aims and scope of the International Ocean Discovery Program (IODP) "2050 Science Framework: Exploring Earth by Scientific Ocean Drilling"and relate specifically to the strategic objectives "Earth's climate system", "Tipping points in Earth's history", and "Natural hazards impacting society"

    Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary)

    No full text
    Volume: 170Start Page: 439End Page: 45

    Introduction to this special section: The Black Sea Region

    No full text

    West Africa—A special issue on an emerging world petroleum province

    No full text

    Introduction to this special section: The Mediterranean region

    No full text

    Salt tectonics in the Atlantic margin of Morocco

    No full text
    corecore