27 research outputs found

    On the communication complexity of sparse set disjointness and exists-equal problems

    Full text link
    In this paper we study the two player randomized communication complexity of the sparse set disjointness and the exists-equal problems and give matching lower and upper bounds (up to constant factors) for any number of rounds for both of these problems. In the sparse set disjointness problem, each player receives a k-subset of [m] and the goal is to determine whether the sets intersect. For this problem, we give a protocol that communicates a total of O(k\log^{(r)}k) bits over r rounds and errs with very small probability. Here we can take r=\log^{*}k to obtain a O(k) total communication \log^{*}k-round protocol with exponentially small error probability, improving on the O(k)-bits O(\log k)-round constant error probability protocol of Hastad and Wigderson from 1997. In the exist-equal problem, the players receive vectors x,y\in [t]^n and the goal is to determine whether there exists a coordinate i such that x_i=y_i. Namely, the exists-equal problem is the OR of n equality problems. Observe that exists-equal is an instance of sparse set disjointness with k=n, hence the protocol above applies here as well, giving an O(n\log^{(r)}n) upper bound. Our main technical contribution in this paper is a matching lower bound: we show that when t=\Omega(n), any r-round randomized protocol for the exists-equal problem with error probability at most 1/3 should have a message of size \Omega(n\log^{(r)}n). Our lower bound holds even for super-constant r <= \log^*n, showing that any O(n) bits exists-equal protocol should have \log^*n - O(1) rounds

    On List Coloring and List Homomorphism of Permutation and Interval Graphs

    Get PDF
    List coloring is an NP-complete decision problem even if the total number of colors is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list coloring of permutation graphs with a bounded total number of colors. More generally, we give a polynomial-time algorithm that solves the list-homomorphism problem to any fixed target graph for a large class of input graphs, including all permutation and interval graphs.&nbsp

    Secret sharing on trees: problem solved

    Get PDF
    We determine the worst case information rate for all secret sharing schemes based on trees. It is the inverse of 2−1/c2-1/c, where cc is the size of the maximal core in the tree. A {\it core} is a connected subset of the vertices so that every vertex in the core has a neighbor outside the core. The upper bound comes from an application of the entropy method, while the lower bound is achieved by a construction using Stinson\u27s decomposition theorem. It is shown that 2−1/c2-1/c is also the {\it fractional cover number} of the tree where the edges of the tree are covered by stars, and the vertex cover should be minimized. We also give an O(n2)O(n^2) algorithm which finds an optimal cover on any tree, and thus a perfect secret sharing scheme with optimal rate
    corecore