563 research outputs found

    Ertragsentwicklung von Erbsen sowie Sommergerste in Reinsaat und in Mischung mit Leindotter oder Koriander im Ökologischen Landbau

    Get PDF
    Mischkulturen können unterschiedliche Wachstumsbedingungen besser ausschöpfen als Monokulturen. Im Gemenge mit Leguminosen können Nicht-Leguminosen ĂŒberschĂŒssigen Stickstoff aus der Bodenlösung aufnehmen. Ein ökonomischer Zusatzertrag wird bei einer Beimengung von Leindotter zu Erbsen oder Sommergerste diskutiert. Erbsenreinsaaten erreichten im Vergleich zu beiden Leindotter-Varianten gesichert höhere ErtrĂ€ge; Erbsen mit resp. ohne Koriander unterschieden sich nicht. Sommergerste – Reinsaaten waren bezĂŒglich dem Ertrag den Mischungen mit Leindotter ĂŒberlegen; Koriander wurde von der Sommergerste vollstĂ€ndig unterdrĂŒckt. Abschließend kann festgehalten werden, dass unter limitierenden NiederschlĂ€gen im pannonischen Klimaraum dem Mischkulturanbau enge Grenzen gesetzt sind

    Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab

    Get PDF
    We present 3D full-sphere supernova simulations of non-rotating low-mass (~9 Msun) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions [~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen-neon-magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the Vertex-Prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the Prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of ~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA

    In-medium modifications of the ππ\pi\pi interaction in photon-induced reactions

    Full text link
    Differential cross sections of the reactions (Îł,π∘π∘)(\gamma,\pi^\circ\pi^\circ) and (Îł,π∘π++π∘π−)(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-) have been measured for several nuclei (1^1H,12^{12}C, and nat^{\rm nat}Pb) at an incident-photon energy of EÎłE_{\gamma}=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the ππ\pi\pi invariant-mass distribution is found in the π∘π∘\pi^\circ\pi^\circ channel. This dependence is not observed in the π∘π+/−\pi^\circ\pi^{+/-} channel and is consistent with an in-medium modification of the ππ\pi\pi interaction in the II=JJ=0 channel. The data are compared to π\pi-induced measurements and to calculations within a chiral-unitary approach

    Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab

    Get PDF
    We present 3D full-sphere supernova simulations of non-rotating low-mass (∌9 M_⊙) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions (∌0.5–1.0 × 10⁔⁰ erg) of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen–neon–magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the VERTEX-PROMETHEUS code, whereas the ECSN explosion is modelled using parametric neutrino transport in the PROMETHEUS-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less second dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of â‰Č 5×10⁻³ M_⊙ have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly born NS. The LMCCSN model with less second dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km s⁻Âč and a NS spin period of ∌30 ms, both not largely different from those of the Crab pulsar at birth

    Climate and plant controls on soil organic matter in coastal wetlands

    Get PDF
    Coastal wetlands are among the most productive and carbon‐rich ecosystems on Earth. Long‐term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate–plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services

    Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    Get PDF
    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature- induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands
    • 

    corecore