905 research outputs found

    Resource-aware ECG analysis on mobile devices

    Get PDF

    From Flow to Jamming: Lattice Gas Automaton Simulations in Granular Materials

    Full text link
    We introduce the first extension of a Lattice Gas Automaton (LGA) model to accurately replicate observed emergent phenomena in granular materials with a special focus on previously unexplored jamming transitions by incorporating gravitational effects, energy dissipation in particle collisions, and wall friction. We successfully reproduce flow rate evolution, density wave formation, and jamming transition observed in experiments. We also explore the critical density at which jamming becomes probable. This research advances our understanding of granular dynamics and offers insights into the jamming behavior of granular materials

    Spectroscopy of a fractional Josephson vortex molecule

    Full text link
    In long Josephson junctions with multiple discontinuities of the Josephson phase, fractional vortex molecules are spontaneously formed. At each discontinuity point a fractional Josephson vortex carrying a magnetic flux Φ<Φ0|\Phi|<\Phi_0, Φ02.07×1015\Phi_0\approx 2.07\times 10^{-15} Wb being the magnetic flux quantum, is pinned. Each vortex has an oscillatory eigenmode with a frequency that depends on Φ/Φ0\Phi/\Phi_0 and lies inside the plasma gap. We experimentally investigate the dependence of the eigenfrequencies of a two-vortex molecule on the distance between the vortices, on their topological charge =2πΦ/Φ0\wp=2\pi\Phi/\Phi_0 and on the bias current γ\gamma applied to the Josephson junction. We find that with decreasing distance between vortices, a splitting of the eigenfrequencies occurs, that corresponds to the emergence of collective oscillatory modes of both vortices. We use a resonant microwave spectroscopy technique and find good agreement between experimental results and theoretical predictions.Comment: submitted to Phys. Rev.

    The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses

    Get PDF
    The contents of the colon of the Tyrolean Iceman who lived Ga. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill- founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined

    Evaluating the In vivo Efficacy of Copper-Chitosan Nanocomposition for Treating Vascular Wilt Disease in Date Palm

    Full text link
    Date palm, Phoenix dactylifera, as one of the most important fruit crops in Egypt and many other countries, can be affected by many fungal diseases, among which the vascular wilt disease, caused by the fungal pathogen Fusarium oxysporum, is considered the most deteriorating one. This study aims at evaluating the efficiency of Copper-Chitosan Nanopcomposition for treating the vascular wilt disease in date palm. The study relies mainly on beleaguering the disease via the double-role functionality of copper-chitosan nanocomposition, i.e. its potential antifungal effect on the fungal pathogen, besides its capability to enhance the immune responses of the infected plant. In this regard, chitosan nanoparticles were prepared according to the ionic gelation method, whereas copper nanoparticles were prepared according to the chemical reduction method. Physicochemical characterization of both chitosan and copper nanoparticles was performed using dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Copper-chitosan nanocomposition could significantly reduce the vascular wilt disease severity; this means that the nanocomposition can be used in the future for developing new nano-fungicides to control such pathogens

    Effect of tranexamic acid in prevention of postpartum hemorrhage in elective caesarean delivery: a randomized controlled study

    Get PDF
    Background: Postpartum hemorrhage is the ugly ghost that most obstetricians believe because many cases unpredicted and may be associated with rapid patient deterioration that may lead mortality or developing serious long-term morbidities. The objective of this study is to assess the efficacy of slowly intravenous administration of tranexamic acid in prevention and decline the severity of postpartum hemorrhage immediately prior to elective caesarean section.Methods: A double blinded, randomized, case control trial carried out at Obstetrics and Gynecology Department, Faculty of Medicine, South Valley University, Egypt from May 2017 to April 2018. This study was conducted on 500 full term pregnant women underwent elective caesarean section. The patients were divided randomly into: Group A (study group) included 250 patients received tranexamic acid 1gm slowly iv over 2 minutes at least 10 minutes before operation started and Group B (control group) included 250 patients that received placebo (normal saline NaCl 0.9%).Results: Incidence of PPH in group A and group B were (4.4% and 6.8) respectively, 1.2% in group A and 2.8% in group B had severe degree of PPH. Amount of blood loss immediately after placental delivery up to first 6 hours postoperative was statistically significant increase in placebo group than tranexamic acid group with p value <0.001.Conclusions: Tranexamic acid administration few minutes prior to elective cesarean section was effective in reducing the incidence and severity of PPH and decreased the use of additional uterotonic drugs and additional surgical interventions

    Novel Pressure Induced Structural Phase Transition in AgSbTe2_{2}

    Full text link
    We report a novel high pressure structural sequence for the functionally graded thermoelectric, narrow band gap semiconductor AgSbTe2_{2}, using angle dispersive x-ray diffraction in a diamond anvil cell with synchrotron radiation at room temperature. The compound undergoes a B1 to B2 transition; the transition proceeds through an intermediate amorphous phase found between 17-26 GPa that is quenchable down to ambient conditions. The pressure induced structural transition observed in this compound is the first of its type reported in this ternary cubic family, and it is new for the B1-B2 transition pathway reported to date. Density Functional Theory (DFT) calculations performed for the B1 and B2 phases are in good agreement with the experimental results.Comment: 4 pages, 3 figure
    corecore