343 research outputs found

    FSHD muscular dystrophy Region Gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis

    Get PDF
    Facioscapulohumeral Muscular Dystrophy (FSHD) is an autosomal dominant myopathy with a strong epigenetic component. It is associated with deletion of a macrosatellite repeat leading to over-expression of the nearby genes. Among them, we focused on FSHD Region Gene 1 (FRG1) since its over-expression in mice, X. laevis and C. elegans leads to muscular dystrophy-like defects, suggesting that FRG1 plays a relevant role in muscle biology. Here we show that, when overexpressed, FRG1 binds and interferes with the activity of the histone methyltransferase Suv4-20h1 both in mammals and Drosophila. Accordingly, FRG1 over-expression or Suv4-20h1 knockdown inhibits myogenesis. Moreover, Suv4-20h KO mice develop muscular dystrophy signs. Finally, we identify the FRG1/Suv4-20h1 target Eid3 as a novel myogenic inhibitor that contributes to the muscle differentiation defects. Our study suggests a novel role of FRG1 as epigenetic regulator of muscle differentiation and indicates that Suv4-20h1 has a gene-specific function in myogenesis

    The Floodplain Woods of Tuscany

    Get PDF
    The contraction of lowland forests throughout Europe began in remote times and then intensified strongly with land reclamation by agriculture and urbanization during the first half of the last century. We present a map of the Floodplain Woods of Tuscany on a scale of 1:300,000 as a synthesis of that built at the scale of 1:10,000 and the methods used to obtain it. Nearly 90% of the patches contain habitats of concern to conservation, according to the Habitat Directive. The Tuscan Floodplain Woods remained prevalent in coastal areas, where some levels of protection are guaranteed by the presence of several protected areas, whereas they have practically vanished in the other parts of the regional territory. The resulting patches are very small and distant from each other, so only in-depth management of all potential floodplain forest areas, taking into consideration patches for their regeneration, can be useful to assure their conservation

    Thermal quark production in ultra-relativistic nuclear collisions

    Full text link
    We calculate thermal production of u, d, s, c and b quarks in ultra-relativistic heavy ion collisions. The following processes are taken into account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark species. We use the thermal quark masses, mi2(T)≃mi2+(2g2/9)T2m_i^2(T)\simeq m_i^2 + (2g^2/9)T^2, in all the rates. At small mass (mi(T)<2Tm_i(T)<2T), the production is largely dominated by the thermal gluon decay channel. We obtain numerical and analytic solutions of one-dimensional hydrodynamic expansion of an initially pure glue plasma. Our results show that even in a quite optimistic scenario, all quarks are far from chemical equilibrium throughout the expansion. Thermal production of light quarks (u, d and s) is nearly independent of species. Heavy quark (c and b) production is quite independent of the transition temperature and could serve as a very good probe of the initial temperature. Thermal quark production measurements could also be used to determine the gluon damping rate, or equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files); CERN-TH.7038/9
    • …
    corecore