636 research outputs found

    New Einstein-Sasaki and Einstein Spaces from Kerr-de Sitter

    Get PDF
    In this paper, which is an elaboration of our results in hep-th/0504225, we construct new Einstein-Sasaki spaces L^{p,q,r_1,...,r_{n-1}} in all odd dimensions D=2n+1\ge 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1)^{n+1} principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r_1,...,r_{n-1}), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds L^{p,q,r_1,...,r_{n-1}}. We also construct new complete and non-singular compact Einstein spaces \Lambda^{p,q,r_1,...,r_n} in D=2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.Comment: latex, 26 page

    Low Energy Light Yield of Fast Plastic Scintillators

    Full text link
    Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as the detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators---EJ-200, EJ-204, and EJ-208---was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.Comment: 15 pages, 6 figure

    Heterotic Models from Vector Bundles on Toric Calabi-Yau Manifolds

    Get PDF
    We systematically approach the construction of heterotic E_8 X E_8 Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaustive scan and find all positive monad bundles with SU(N), N=3,4,5 structure groups, subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces, allow for three families of quarks and leptons. We also perform a preliminary scan over the much larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying the three-family constraint. These 280 models provide a starting point for heterotic model building based on toric three-folds.Comment: 41 pages, 5 figures. A table modified and a table adde

    Flavour in supersymmetry: horizontal symmetries or wave function renormalisation

    Get PDF
    We compare theoretical and experimental predictions of two main classes of models addressing fermion mass hierarchies and flavour changing neutral currents (FCNC) effects in supersymmetry: Froggatt-Nielsen (FN) U(1) gauged flavour models and Nelson-Strassler/extra dimensional models with hierarchical wave functions for the families. We show that whereas the two lead to identical predictions in the fermion mass matrices, the second class generates a stronger suppression of FCNC effects. We prove that, whereas at first sight the FN setup is more constrained due to anomaly cancelation conditions, imposing unification of gauge couplings in the second setup generates conditions which precisely match the mixed anomaly constraints in the FN setup. Finally, we provide an economical extra dimensional realisation of the hierarchical wave functions scenario in which the leptonic FCNC can be efficiently suppressed due to the strong coupling (CFT) origin of the electron mass.Comment: 23 page

    Strong coupling, discrete symmetry and flavour

    Full text link
    We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure

    Holographic Vitrification

    Get PDF
    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.Comment: 100 pages, 25 figure

    A Stealth Supersymmetry Sampler

    Get PDF
    The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a "stealth sector") lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z' gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.Comment: 45 pages, 16 figure
    • …
    corecore