22 research outputs found

    Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimeticPeptide

    Get PDF
    Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer’s disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25–35) injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25–35) injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β) and to determine the effects of amyloid-beta(25–35) and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in nonpathological conditions, can be neuroprotective in disease-like conditions

    Different Host Exploitation Strategies in Two Zebra Mussel-Trematode Systems: Adjustments of Host Life History Traits

    Get PDF
    The zebra mussel is the intermediate host for two digenean trematodes, Phyllodistomum folium and Bucephalus polymorphus, infecting gills and the gonad respectively. Many gray areas exist relating to the host physiological disturbances associated with these infections, and the strategies used by these parasites to exploit their host without killing it. The aim of this study was to examine the host exploitation strategies of these trematodes and the associated host physiological disturbances. We hypothesized that these two parasite species, by infecting two different organs (gills or gonads), do not induce the same physiological changes. Four cellular responses (lysosomal and peroxisomal defence systems, lipidic peroxidation and lipidic reserves) in the host digestive gland were studied by histochemistry and stereology, as well as the energetic reserves available in gonads. Moreover, two indices were calculated related to the reproductive status and the physiological condition of the organisms. Both parasites induced adjustments of zebra mussel life history traits. The host-exploitation strategy adopted by P. folium would occur during a short-term period due to gill deformation, and could be defined as “virulent.” Moreover, this parasite had significant host gender-dependent effects: infected males displayed a slowed-down metabolism and energetic reserves more allocated to growth, whereas females displayed better defences and would allocate more energy to reproduction and maintenance. In contrast, B. polymorphus would be a more “prudent” parasite, exploiting its host during a long-term period through the consumption of reserves allocated to reproduction

    ‘Subpial fan cell’ – a class of calretinin neuron in layer 1 of adult monkey prefrontal cortex.

    No full text
    Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibres which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organisation of layer 1. This study has identified 8 morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed ‘subpial fan (SPF) cell’ - described in detail.SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimetres apart with axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC – possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monke

    A Simple Method for Reconditioning Epoxy-Coated Microelectrodes for Extracellular Single Neuron Recording

    No full text
    Epoxy-insulated tungsten microelectrodes can be used once or twice in our lab before the impedance becomes too low. Dipping the electrodes in epoxy followed by curing restores their initial high impedance which is associated with good isolation of single neurons. It is a cost effective and simple procedure

    An NCAM mimetic, FGL, alters hippocampal cellular morphometry in young adult (4 month-old) rats

    No full text
    The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS

    The density and total number of CA1 pyramidal cells in the right dorsal hippocampus.

    No full text
    <p>Immunocytochemistry (NeuN antibody in conjunction with DAB) and the optical fractionator method were used to establish cell density within the CA1. Cell density (a) was multiplied by the volume of the dorsal CA1 SP to establish total number (b). The data was analysed using a one-way ANOVA and Tukey’s post-hoc test. The Aβ<sub>25–35</sub>+FGL group had a significantly greater density (a) and total number (b) of pyramidal cells in the CA1 SP than compared with the Aβ<sub>25–35</sub> alone and the FGL alone groups, whilst the control group had significantly more pyramidal cells than all of the other groups, regardless of the groups cell density. (*<i>P</i><0.05, **<i>P</i><0.01). Mean ± SEM, n = 4.</p

    Percentage of CA1 pyramidal cells in the right dorsal hippocampus containing inactive GSK3β.

    No full text
    <p>Double immunocytochemistry and the optical fractionator method were used to establish the pyramidal cell density in the CA1 and also the density of pyramidal cells containing inactive GSK3β. The absolute numbers of both densities were calculated and the percentage of all the CA1 pyramidal cells that contained inactive GSK3β was established. The data was analysed using a one-way ANOVA and Tukey’s post-hoc test. Aβ<sub>25–35</sub>+FGL rats had a significantly higher percentage of pyramidal neurons in the CA1 that contained inactive GSK3β compared with Aβ<sub>25–35</sub> alone rats. (*<i>P</i><0.05). Mean ± SEM, n = 4.</p
    corecore