3 research outputs found

    Mass Measurements of Neutron-Deficient Yb Isotopes and Nuclear Structure at the Extreme Proton-Rich Side of the N=82 Shell

    Get PDF
    International audienceHigh-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF using TITAN’s multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending the measurements to two isotopes further away from stability than otherwise possible. The ground state masses of Yb150,153 and the excitation energy of Ybm151 were measured for the first time. As a result, the persistence of the N=82 shell with almost unmodified shell gap energies is established up to the proton drip line. Furthermore, the puzzling systematics of the h11/2-excited isomeric states of the N=81 isotones are unraveled using state-of-the-art mean field calculation

    Systematic Search For Evidence of Tetrahedral and Octahedral Symmetries in Subatomic Physics: Follow-up of the First Identification Case in 152Sm

    Get PDF
    In a recent article [1] group-theory representation-methods have been combined with the realistic mean-field calculation results to elaborate new, specifically designed methods of experimental identification of the tetrahedral/octahedral symmetries in atomic nuclei. The authors demonstrated that experimental data on 152 Sm existing in the literature are fully compatible with the extremely restrictive group-theory criteria of simultaneous presence of tetrahedral and octahedral symmetries, thus identifying these symmetries in subatomic physics for the first time. We discuss theory predictions related to the systematic presence of these symmetries as well as their manifestations throughout the Periodic Table in the form of islands centred around the doublymagic tetrahedral-symmetry nuclei. The corresponding theory predictions are discussed in the context of the planned new experiments, which would employ the advanced mass-spectrometry methods [2], in view of the new experimental search criteria [1]. The addressed field of symmetry-research presents particularly promising potentialities in the domain of exotic nuclei studies. Indeed, as it can be demonstrated, in the exact tetrahedral and/or octahedral symmetry limits the corresponding nuclei emit neither E2 nor E1 radiation generating isomeric states with lifetimes which can become much longer than those of the related ground states. This is expected to open the new research strategies for the whole domain of the exotic nuclei studies throughout the Periodic Table

    Systematic Search For Evidence of Tetrahedral and Octahedral Symmetries in Subatomic Physics: Follow-up of the First Identification Case in 152^{152}Sm

    No full text
    International audienceIn a recent article [1] group-theory representation-methods have been combined with the realistic mean-field calculation results to elaborate new, specifically designed methods of experimental identification of the tetrahedral/octahedral symmetries in atomic nuclei. The authors demonstrated that experimental data on 152 Sm existing in the literature are fully compatible with the extremely restrictive group-theory criteria of simultaneous presence of tetrahedral and octahedral symmetries, thus identifying these symmetries in subatomic physics for the first time. We discuss theory predictions related to the systematic presence of these symmetries as well as their manifestations throughout the Periodic Table in the form of islands centred around the doublymagic tetrahedral-symmetry nuclei.The corresponding theory predictions are discussed in the context of the planned new experiments, which would employ the advanced mass-spectrometry methods [2], in view of the new experimental search criteria [1]. The addressed field of symmetry-research presents particularly promising potentialities in the domain of exotic nuclei studies. Indeed, as it can be demonstrated, in the exact tetrahedral and/or octahedral symmetry limits the corresponding nuclei emit neither E2 nor E1 radiation generating isomeric states with lifetimes which can become much longer than those of the related ground states. This is expected to open the new research strategies for the whole domain of the exotic nuclei studies throughout the Periodic Table.Key words: Nuclear structure / Nuclear Platonic symmetries / Exotic nuclei / Shape isomer
    corecore