119 research outputs found
Controlled deflection of cold atomic clouds and of Bose-Einstein condensates
We present a detailed, realistic proposal and analysis of the implementation
of a cold atom deflector using time-dependent far off-resonance optical guides.
An analytical model and numerical simulations are used to illustrate its
characteristics when applied to both non-degenerate atomic ensembles and to
Bose-Einstein condensates. Using for all relevant parameters values that are
achieved with present technology, we show that it is possible to deflect almost
entirely an ensemble of Rb atoms falling in the gravity field. We
discuss the limits of this proposal, and illustrate its robustness against
non-adiabatic transitions
Bose-Einstein condensation in dark power-law laser traps
We investigate theoretically an original route to achieve Bose-Einstein
condensation using dark power-law laser traps. We propose to create such traps
with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling
their azimuthal order allows for the exploration of a multitude of
power-law trapping situations in one, two and three dimensions, ranging from
the usual harmonic trap to an almost square-well potential, in which a
quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and
disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take
the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian
traps. In addition, for a fixed atom number, higher transition temperatures are
obtained in such configurations when compared with a harmonic trap of same
volume. This effect, which results in a substantial acceleration of the
condensation dynamics, requires a better but still reasonable focusing of the
Laguerre-Gaussian beams
Reply to Comment on 'Species-selective lattice launch for precision atom interferometry'
Reply to: Alexander D Cronin and Raisa Trubko: Comment on 'Species-selective lattice launch for precision atom interferometry'. In: New Journal of Physics 18 (2016), Nr. 11, 118001. DOI: https://doi.org/10.1088/1367-2630/18/11/11800
Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry
Abstract: Quantum sensors based on light pulse atom interferometers allow for measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how interferometry can benefit from the use of Bose–Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose–Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors. Graphic abstract: [Figure not available: see fulltext.] © 2021, The Author(s)
High-flux source system for matter-wave interferometry exploiting tunable interactions
Atom interferometers allow determining inertial effects to high accuracy. Quantum-projection noise as well as systematic effects impose demands on large atomic flux as well as ultralow expansion rates. Here we report on a high-flux source of ultracold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap. Our results are achieved in a time-averaged optical dipole trap and enabled through dynamic tuning of the atomic scattering length across two orders of magnitude interaction strength via magnetic Feshbach resonances. We demonstrate Bose-Einstein condensates with more than 6Ă—104 particles after evaporative cooling for 170 ms and their subsequent release with a minimal expansion energy of 4.5 nK in one direction. Based on our results we estimate the performance of an atom interferometer and compare our source system to a high performance chip trap, as readily available for ultraprecise measurements in microgravity environments
Atomic source selection in space-borne gravitational wave detection
Recent proposals for space-borne gravitational wave detectors based on atom interferometry rely on extremely narrow single-photon transition lines as featured by alkaline-earth metals or atomic species with similar electronic configuration. Despite their similarity, these species differ in key parameters such as abundance of isotopes, atomic flux, density and temperature regimes, achievable expansion rates, density limitations set by interactions, as well as technological and operational requirements. In this study, we compare viable candidates for gravitational wave detection with atom interferometry, contrast the most promising atomic species, identify the relevant technological milestones and investigate potential source concepts towards a future gravitational wave detector in space
Atomic source selection in space-borne gravitational wave detection
Recent proposals for space-borne gravitational wave detectors based on atom
interferometry rely on extremely narrow single-photon transition lines as
featured by alkaline-earth metals or atomic species with similar electronic
configuration. Despite their similarity, these species differ in key parameters
such as abundance of isotopes, atomic flux, density and temperature regimes,
achievable expansion rates, density limitations set by interactions, as well as
technological and operational requirements. In this study, we compare viable
candidates for gravitational wave detection with atom interferometry, contrast
the most promising atomic species, identify the relevant technological
milestones and investigate potential source concepts towards a future
gravitational wave detector in space
Restriction-based Fragmentation of Business Processes over the Cloud
Despite the elasticity and pay-per-use benefits of cloud computing (aka fifth utility computing), organizations adopting clouds could be locked-into single cloud providers, which is not always a “pleasant” experience when these providers stop operations. This is a serious concern for those organizations that who would like to deploy (core) business processes on the cloud along with tapping into these 2 benefits. To address the lock-into concern, this paper proposes an approach for decomposing business processes into fragments that would run over multiple clouds and hence, multiple providers. To develop fragments, the approach considers both restrictions over ownersof business processes and potential competition among cloud providers.Onthe one hand, restrictions apply to each task in a business process and are specialized into budget to allocate, deadline to meet, and exclusivity to request. On the other hand, competition leads cloud providers to offer flexible pricing policies that would cater to the needs and requirements of each process owner. A policy handles certain clouds’ properties referred to as limitedness, non-renewability, and nonshareability that impact the availability of cloud resources and hence, the whole fragmentation. For instance, a non- shareable resource could delay other processes, should the current process do not release this resource on time. During fragmentation interactions between owners of processes and providers of clouds happen according to 2 strategies referred to as global and partial. The former collects offers about cloud resources from all providers, while the latter collects such details from particular providers. To evaluate these strategies’ pros and cons, a system implementing them as well as demonstrating the technical feasibility of the fragmentation approach using credit-application case study, is also presented in the paper. The system extends BPMN2- modeler Eclipse plugin and supports interactions of processes’ owners with clouds’ providers that result to identifying the necessary fragments with focus on cost optimization
Interferometry with Bose-Einstein Condensates in Microgravity
Atom interferometers covering macroscopic domains of space-time are a
spectacular manifestation of the wave nature of matter. Due to their unique
coherence properties, Bose-Einstein condensates are ideal sources for an atom
interferometer in extended free fall. In this paper we report on the
realization of an asymmetric Mach-Zehnder interferometer operated with a
Bose-Einstein condensate in microgravity. The resulting interference pattern is
similar to the one in the far-field of a double-slit and shows a linear scaling
with the time the wave packets expand. We employ delta-kick cooling in order to
enhance the signal and extend our atom interferometer. Our experiments
demonstrate the high potential of interferometers operated with quantum gases
for probing the fundamental concepts of quantum mechanics and general
relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia
- …