556 research outputs found

    Ocean- Atmosphere Interactions During Cyclone Nargis

    Get PDF
    Cyclone Nargis (Figure 1a) made landfall in Myanmar (formerly Burma) on 2 May 2008 with sustained winds of approximately 210 kilometers per hour, equivalent to a category 3– 4 hurricane. In addition, Nargis brought approximately 600 millimeters of rain and a storm surge of 3– 4 meters to the low- lying and densely populated Irrawaddy River delta. In its wake, the storm left an estimated 130,000 dead or missing and more than $10 billion in economic losses. It was the worst natural disaster to strike the Indian Ocean region since the 26 December 2004 tsunami and the worst recorded natural disaster ever to affect Myanmar

    Recent global-warming hiatus tied to equatorial Pacific surface cooling

    Get PDF
    Despite the continued increase of atmospheric greenhouse gases, the annual-mean global temperature has not risen in this century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus of global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method to unravel mechanisms for global temperature change by prescribing the observed history of sea surface temperature over the deep tropical Pacific in a climate model, in addition to radiative forcing. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with r = 0.97 for 1970-2012 (a period including the current hiatus and an accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern and prolonged drought in southern North America. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La Niña-like decadal cooling. While similar decadal hiatus events may occur in the future, multi-decadal warming trend is very likely to continue with greenhouse gas increase

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa

    Get PDF
    Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (><4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning
    corecore