7 research outputs found

    Accurate Complete Basis Set Extrapolation of Direct Random Phase Correlation Energies

    No full text
    The direct random phase approximation (dRPA) is a promising way to obtain improvements upon the standard semilocal density functional results in many aspects of computational chemistry. In this paper, we address the slow convergence of the calculated dRPA correlation energy with the increase of the quality and size of the popular Gaussian-type Dunning’s correlation consistent aug-cc-pV<i>X</i>Z split valence atomic basis set family. The cardinal number <i>X</i> controls the size of the basis set, and we use <i>X</i> = 3–6 in this study. It is known that even the very expensive <i>X</i> = 6 basis sets lead to large errors for the dRPA correlation energy, and thus complete basis set extrapolation is necessary. We study the basis set convergence of the dRPA correlation energies on a set of 65 hydrocarbon isomers from CH<sub>4</sub> to C<sub>6</sub>H<sub>6</sub>. We calculate the iterative density fitted dRPA correlation energies using an efficient algorithm based on the CC-like form of the equations using the self-consistent HF orbitals. We test the popular inverse cubic, the optimized exponential, and inverse power formulas for complete basis set extrapolation. We have found that the optimized inverse power based extrapolation delivers the best energies. Further analysis showed that the optimal exponent depends on the molecular structure, and the most efficient two-point energy extrapolations that use <i>X</i> = 3 and 4 can be improved considerably by considering the atomic composition and hybridization states of the atoms in the molecules. Our results also show that the optimized exponents that yield accurate <i>X</i> = 3 and 4 extrapolated dRPA energies for atoms or small molecules might be inaccurate for larger molecules

    Simple Modifications of the SCAN Meta-Generalized Gradient Approximation Functional

    No full text
    We analyzed various possibilities to improve upon the SCAN meta-generalized gradient approximation density functional obeying all known properties of the exact functional that can be satisfied at this level of approximation. We examined the necessity of locally satisfying a strongly tightened lower bound for the exchange energy density in single-orbital regions, the nature of the error cancellation between the exchange and correlation parts in two-electron regions, and the effect of the fourth-order term in the gradient expansion of the correlation energy density. We have concluded that the functional can be modified to separately reproduce the exchange and correlation energies of the helium atom by locally releasing the strongly tightened lower bound for the exchange energy density in single-orbital regions, but this leads to an unbalanced improvement in the single-orbital electron densities. Therefore, we decided to keep the <i>F</i><sub>X</sub> ≤ 1.174 exact condition for any single-orbital density, where <i>F</i><sub>X</sub> is the exchange enhancement factor. However, we observed a general improvement in the single-orbital electron densities by revising the correlation functional form to follow the second-order gradient expansion in a wider range. Our new revSCAN functional provides more-accurate atomization energies for the systems with multireference character, compared to the SCAN functional. The nonlocal VV10 dispersion-corrected revSCAN functional yields more-accurate noncovalent interaction energies than the VV10-corrected SCAN functional. Furthermore, its global hybrid version with 25% of exact exchange, called revSCAN0, generally performs better than the similar SCAN0 for reaction barrier heights. Here, we also analyzed the possibility of the construction of a local hybrid from the SCAN exchange and a specific locally bounded nonconventional exact exchange energy density. We predict compatibility problems since this nonconventional exact exchange energy density does not really obey the strongly tightened lower bound for the exchange energy density in single-orbital regions

    Accurate Diels–Alder Reaction Energies from Efficient Density Functional Calculations

    No full text
    We assess the performance of the semilocal PBE functional; its global hybrid variants; the highly parametrized empirical M06-2X and M08-SO; the range separated rCAM-B3LYP and MCY3; the atom-pairwise or nonlocal dispersion corrected semilocal PBE and TPSS; the dispersion corrected range-separated ωB97X-D; the dispersion corrected double hybrids such as PWPB95-D3; the direct random phase approximation, dRPA, with Hartree–Fock, Perdew–Burke–Ernzerhof, and Perdew–Burke–Ernzerhof hybrid reference orbitals and the RPAX2 method based on a Perdew–Burke–Ernzerhof exchange reference orbitals for the Diels–Alder, DARC; and self-interaction error sensitive, SIE11, reaction energy test sets with large, augmented correlation consistent valence basis sets. The dRPA energies for the DARC test set are extrapolated to the complete basis set limit. CCSD­(T)/CBS energies were used as a reference. The standard global hybrid functionals show general improvements over the typical endothermic energy error of semilocal functionals, but despite the increased accuracy the precision of the methods increases only slightly, and thus all reaction energies are simply shifted into the exothermic direction. Dispersion corrections give mixed results for the DARC test set. Vydrov–Van Voorhis 10 correction to the reaction energies gives superior quality results compared to the too-small D3 correction. Functionals parametrized for energies of noncovalent interactions like M08-SO give reasonable results without any dispersion correction. The dRPA method that seamlessly and theoretically correctly includes noncovalent interaction energies gives excellent results with properly chosen reference orbitals. As the results for the SIE11 test set and H<sub>2</sub><sup>+</sup> dissociation show that the dRPA methods suffer from delocalization error, good reaction energies for the DARC test set from a given method do not prove that the method is free from delocalization error. The RPAX2 method shows good performance for the DARC, the SIE11 test sets, and for the H<sub>2</sub><sup>+</sup> and H<sub>2</sub> potential energy curves showing no one-electron self-interaction error and reduced static correlation errors at the same time. We also suggest simplified DARC6 and SIE9 test sets for future benchmarking

    A meta-GGA Made Free of the Order of Limits Anomaly

    No full text
    We have improved the revised Tao–Perdew–Staroverov–Scuseria (revTPSS) meta-generalized gradient approximation (GGA) in order to remove the order of limits anomaly in its exchange energy. The revTPSS meta-GGA recovers the second-order gradient expansion for a wide range of densities and therefore provides excellent atomization energies and lattice constants. For other properties of materials, however, even the revTPSS does not give the desired accuracy. The revTPSS does not perform as well as expected for the energy differences between different geometries for the same molecular formula and for the related nonbarrier height chemical reaction energies. The same order of limits problem might lead to inaccurate energy differences between different crystal structures and to inaccurate cohesive energies of insulating solids. Here we show a possible way to remove the order of limits anomaly with a weighted difference of the revTPSS exchange between the slowly varying and iso-orbitals (one- or two-electron) limits. We show that the new regularized (regTPSS) gives atomization energies comparable to revTPSS and preserves the accurate lattice constants as well. For other properties, the regTPSS gives at least the same performance as the revTPSS or TPSS meta-GGAs

    Construction and Application of a New Dual-Hybrid Random Phase Approximation

    No full text
    The direct random phase approximation (dRPA) combined with Kohn–Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as <i>N</i><sup>4</sup> with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Diels–Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy

    Construction of a Spin-Component Scaled Dual-Hybrid Random Phase Approximation

    No full text
    Recently, we have constructed a dual-hybrid direct random phase approximation method, called dRPA75, and demonstrated its good performance on reaction energies, barrier heights, and noncovalent interactions of main-group elements. However, this method has also shown significant but quite systematic errors in the computed atomization energies. In this paper, we suggest a constrained spin-component scaling formalism for the dRPA75 method (SCS-dRPA75) in order to overcome the large error in the computed atomization energies, preserving the good performance of this method on spin-unpolarized systems at the same time. The SCS-dRPA75 method with the aug-cc-pVTZ basis set results in an average error lower than 1.5 kcal mol<sup>–1</sup> for the entire <i>n</i>-homodesmotic hierarchy of hydrocarbon reactions (RC0–RC5 test sets). The overall performance of this method is better than the related direct random phase approximation-based double-hybrid PWRB95 method on open-shell systems of main-group elements (from the GMTKN30 database) and comparable to the best <i>O</i>(<i>N</i><sup>4</sup>)-scaling opposite-spin second-order perturbation theory-based double-hybrid methods like PWPB95-D3 and to the <i>O</i>(<i>N</i><sup>5</sup>)-scaling RPAX2@PBEx method, which also includes exchange interactions. Furthermore, it gives well-balanced performance on many types of barrier heights similarly to the best <i>O</i>(<i>N</i><sup>5</sup>)-scaling second-order perturbation theory-based or spin-component scaled second-order perturbation theory-based double-hybrid methods such as XYG3 or DSD-PBEhB95. Finally, we show that the SCS-dRPA75 method has reduced self-interaction and delocalization errors compared to the parent dRPA75 method and a slightly smaller static correlation error than the related PWRB95 method

    Accurate, Precise, and Efficient Theoretical Methods To Calculate Anion−π Interaction Energies in Model Structures

    No full text
    A correct description of the anion−π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion−π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π–anion−π′ sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion−π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion−π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6–17 times faster) for the binary complexes studied in this paper. For 30 ternary π–anion−π′ sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95–D3­(BJ) and B2PLYP–D3­(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set
    corecore