1,360 research outputs found

    Learning to rank music tracks using triplet loss

    Full text link
    Most music streaming services rely on automatic recommendation algorithms to exploit their large music catalogs. These algorithms aim at retrieving a ranked list of music tracks based on their similarity with a target music track. In this work, we propose a method for direct recommendation based on the audio content without explicitly tagging the music tracks. To that aim, we propose several strategies to perform triplet mining from ranked lists. We train a Convolutional Neural Network to learn the similarity via triplet loss. These different strategies are compared and validated on a large-scale experiment against an auto-tagging based approach. The results obtained highlight the efficiency of our system, especially when associated with an Auto-pooling layer

    Visual analysis for drum sequence transcription

    Get PDF
    A system is presented for analysing drum performance video sequences. A novel ellipse detection algorithm is introduced that automatically locates drum tops. This algorithm fits ellipses to edge clusters, and ranks them according to various fitness criteria. A background/foreground segmentation method is then used to extract the silhouette of the drummer and drum sticks. Coupled with a motion intensity feature, this allows for the detection of ‘hits’ in each of the extracted regions. In order to obtain a transcription of the performance, each of these regions is automatically labeled with the corresponding instrument class. A partial audio transcription and color cues are used to measure the compatibility between a region and its label, the Kuhn-Munkres algorithm is then employed to find the optimal labeling. Experimental results demonstrate the ability of visual analysis to enhance the performance of an audio drum transcription system

    How does evolution tune biological noise?

    Get PDF
    International audiencePart of molecular and phenotypic differences between individual cells, between body parts, or between individuals can result from biological noise. This source of variation is becoming more and more apparent thanks to the recent advances in dynamic imaging and single-cell analysis. Some of these studies showed that the link between genotype and phenotype is not strictly deterministic. Mutations can change various statistical properties of a biochemical reaction, and thereby the probability of a trait outcome. The fact that they can modulate phenotypic noise brings up an intriguing question: how may selection act on these mutations? In this review, we approach this question by first covering the evidence that biological noise is under genetic control and therefore a substrate for evolution. We then sequentially inspect the possibilities of negative, neutral, and positive selection for mutations increasing biological noise. Finally, we hypothesize on the specific case of H2A.Z, which was shown to both buffer phenotypic noise and modulate transcriptional efficiency. The recent advances in dynamic imaging and single-cell studies have revealed the stochastic nature of biochemical reactions. Numerous factors are known to affect the degree of noise in these reactions, including temperature (Jo et al., 2005), drug treatment (Dar et al., 2014), age (Bahar et al., 2006) and, very importantly, genotypes (Raser and O'Shea, 2004; Levy and Siegal, 2008; Ansel et al., 2008; Hornung et al., 2012). If mutations can modulate a reaction without necessarily changing the average concentration of its product, then they do not fit in the traditional (often deterministic) view of genotype–phenotype control. Such mutations can change the probabilistic laws of single-cell traits, such as phenotypic noise, which may have important consequences at the multicellular level (Yvert, 2014). Noise has the property to increase disorder. In contrast, living systems are highly organized, developmental processes are under many constrains, and numerous phenotypic traits display robustness to stochastic variation. It is therefore unclear how optimization and control of noise can affect both fidelity and diversity. One way to apprehend this is to examine the mutations that were shown to increase or decrease noise levels. In this review, we first present evidence that noise is under genetic control. We then speculate on the ways by which natural selection acts on it. Finally, we hypothesize on the contribution of histone variant H2A.Z to noise evolution

    Identify, locate and separate: Audio-visual object extraction in large video collections using weak supervision

    Full text link
    We tackle the problem of audiovisual scene analysis for weakly-labeled data. To this end, we build upon our previous audiovisual representation learning framework to perform object classification in noisy acoustic environments and integrate audio source enhancement capability. This is made possible by a novel use of non-negative matrix factorization for the audio modality. Our approach is founded on the multiple instance learning paradigm. Its effectiveness is established through experiments over a challenging dataset of music instrument performance videos. We also show encouraging visual object localization results
    • 

    corecore