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‡ GET / Télécom Paris (ENST). CNRS LTCI. 37 rue Dareau, 75014 Paris, France

ABSTRACT

A system is presented for analysing drum performance video se-
quences. A novel ellipse detection algorithm is introduced that au-
tomatically locates drum tops. This algorithm fits ellipses to edge
clusters, and ranks them according to various fitness criteria. A
background/foreground segmentation method is then used to extract
the silhouette of the drummer and drum sticks. Coupled with a mo-
tion intensity feature, this allows for the detection of ‘hits’ in each
of the extracted regions. In order to obtain a transcription of the
performance, each of these regions is automatically labeled with
the corresponding instrument class. A partial audio transcription
and color cues are used to measure the compatibility between a re-
gion and its label, the Kuhn-Munkres algorithm is then employed
to find the optimal labeling. Experimental results demonstrate the
ability of visual analysis to enhance the performance of an audio
drum transcription system.

1. INTRODUCTION

Music transcription is the process by which a high-level description
of a music piece, typically a music score, is extracted from an audio
signal. Transcription plays a fundamental role in content-based mu-
sic retrieval systems, but also finds application in computer-aided
music teaching or composition. Transcription is a challenging task
and has been the subject of significant research – see [1] for a com-
prehensive review. An interesting subproblem is polyphonic drum
transcription (or drum event detection), which consists of extracting
from complex polyphonic music recordings the times at which each
instrument of the drum kit (bass drum, snare drum, tom) is played.

In this paper, we investigate the use of video information for
the purpose of drum transcription. Video analysis systems have
been proposed for a variety of music related tasks, such as baton
tracking [2], expression analysis in clarinet playing [3], or accent
analysis in drumming [4]. Multimodal systems specifically tailored
for audiovisual transcription tasks are described in [5] for piano
performances or [6] for drums. In this paper, we present several
key improvements of this prior work. Since [6] employs a statis-
tical machine learning approach with scene-dependent features, a
generic classifier cannot be learned and a specific classifier must be
retrained for each sequence processed using either a reference se-
quence (manually annotated), or a partial audio transcription. Our
approach here, however, considers the video analysis task as a de-
tection process rather than as a classification problem thus removing
the need for training sequence-dependent classifiers. Furthermore,
even though an automatic calibration process is described in [6], the
system does not make use of high-level video features – no effort is
made to understand the semantics of the image. Thus, we propose
improved video analysis with emphasis on the detection of the posi-
tion of drum instruments within the scene. Finally, we evaluate our
work on a more diverse, large and difficult database.

The paper is organized as follows. The next section gives an
overview of the video analysis system. The following four sections
present each of its components. Section 7 discusses the results ob-
tained and, finally, section 8 suggests some conclusions and future
directions.

2. OVERVIEW

Several steps (detailed in figure 1) are required to efficiently detect
drum hits. Firstly, the video sequence is analyzed to detect the po-
sition of each drum element (drums and cymbals) in the scene, and
more specifically the part of the instrument hit by the drum sticks
(referred to as drum tops throughout this paper). Since all the drum
tops have a circular shape, the most efficient criterion for this task
is geometric. Then, a simple motion intensity feature, coupled with
foreground object segmentation is used to detect drum strokes on
each of the detected drum tops. In order to obtain a transcription, it
is necessary to identify which drum instrument corresponds to each
detected drum top. Cymbals and other drums (toms, snare drum)
are discriminated using hue features. We also investigate the use of
an audio drum transcription system as an additional source of in-
formation to unequivocally assign each detected region to the cor-
responding drum instrument. Finally, once a video transcription is
obtained, it can be fused with an audio transcription, or other video
transcriptions obtained from different cameras.

3. SEGMENTATION OF DRUM TOPS

We employ an ellipse detection algorithm to automatically extract
the locations of the drum tops. The algorithm begins by extracting
edge pixels and clustering those likely to belong to the same edge
in an image. Then, ellipses are fitted to groups of edge clusters re-
sulting in a potential ellipse. The hypothesised ellipse is then exam-
ined, and several fitness metrics are computed to determine if the
prospective ellipse corresponds to a real ellipse. If we determine
that an ellipse is valid according to the above criteria, we remove
the clusters used to fit the ellipse and update the fitness functions
to ignore pixels that lie within the found ellipse. The searching of
edge clusters is then restarted, allowing for the detection of ellipses
which were previously occluded by the presently detected ellipse.

3.1 Edge Detection
To extract potential edge pixels, we employ a modified version of
the well known Canny operator [7]. Our modified canny operator
works in much the same way as the original, with two important dif-
ferences. First, we replace the standard Gaussian smoothing opera-
tion with a Gaussian Bilateral Filtering [8]. This helps to alleviate
noise while preserving significant image discontinuities. Second,
our algorithm determines the magnitude of the discontinuities as
the weighted average of L ∗ u ∗ v color differences in a 3× 3 win-
dow, instead of the usual grayscale Sobel operator. Once the edge
map E(x,y) has been computed, we then threshold with a high and
a low threshold, producing a coarse edge map Ec(x,y) and a fine
edge map E f (x,y).

3.2 Edge Clustering
Using the coarse edge map Ec(x,y), we wish to produce a set of
pixel clusters C = {C0, . . . ,Cn}, such that each cluster contains pix-
els that are likely to belong to the same semantic edge in the im-
age. The first step is to cluster together all connected pixels using
the 8-connectivity constraint. The result of this operation may, of
course, produce clusters of edge points that form edges of multiple
objects, due to noise and occlusions so we further segment these
clusters at points of local curvature maxima. To achieve this, we
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Figure 1: Overview of the audio/video analysis

first estimate curvature for each point in a cluster. However, direct
estimation curvature using first and second derivatives of the pla-
nar parametric curves in Ci produces quite inaccurate results, due to
noise and quantization error. Observing that curvature for a plane
curve at a given point has a magnitude equal to the reciprocal of the
radius of an osculating circle; we can estimate curvature at each dis-
crete point along the curve by estimating the osculating circle at that
point. The osculating circle at a given point can be approximated by
fitting a circle to points in the same cluster within a given radius of
the point. We use the approximated Euclidean distance circle fitting
method described in [9] to fit the circle.

3.3 Ellipse Fitting
To select clusters of pixels and approximate the ellipses that they
imply, we simply iterate through all possible individual clusters and
pairs of clusters, beginning with the largest. However, a random-
ized selection process, such as RANSAC [10] could also be used at
this stage (see [11]). Once some data points are selected, we fit an
ellipse to them using the direct least mean square method, proposed
in [12]. In brief, for a set of observed points S = {〈xi,yi〉 : 0 < i≤ n}
the method finds the set of ellipse parameters a = [a b c d e f ]T that
minimizes the sum of square algebraic distances, subject to the el-
lipse constraint. That is, subject to b2 < 4ac it is the solution to,

argmin
a

n

∑
i=1

(aT xi)2 (1a)

xi =
[
x2

i xiyi y2
i xi yi 1

]T (1b)

In [12] it was shown that this problem can be solved by express-
ing it as a generalized eigenvalue problem

DT Da = λCa (2)

where D is the design matrix, and C is a 6× 6 constraint matrix
expressing the ellipse constraint as the equality 4ac−b2 = 1, or in
quadratic form aT Ca = 1.

D = [x0 x1 . . . xn]T

Ci j =


2 〈i, j〉 ∈ {〈1,3〉,〈3,1〉}
−1 i = j = 2
0 otherwise

The eigenvector values corresponding to the single positive
eigenvalue λi > 0 in (2) are the ellipse parameters a that satisfy
(1).

3.4 Fitness Evaluation
To evaluate the fitness of a potential ellipse, we first need a fast
method of approximating which pixels occur within an ellipse, and
on its boundary. In our implementation, we use the ellipse raster-
ization procedure presented in [13] to determine border pixels. To

efficiently find the pixels that lie within the ellipse, we use a differ-
ential technique similar to [13] to determine the bounding box for
the ellipse, and then calculate the distance to the ellipse foci for each
pixel within the bounding box. The prospective ellipse is evaluated
using four metrics outlined below:
1. Fit Cost - We define the fit cost as the average of the Euclidean

distances from each point used to fit the ellipse, to the nearest
point on the border of the potential ellipse. Let X =

⋃
Ci where

Ci is a cluster used to fit the ellipse. If a are the potential ellipse
parameters, the fit cost is defined as,

Fc(X) =
1
|X | ∑

x∈X
dist(x,a)

where dist(x,a) denotes the minimum distance from a point to
the ellipse. A large fit cost serves as an indication that the clus-
ters chosen to fit the ellipse are incompatible. To determine the
distance from a point to an ellipse, we use the iterative method
described in [14].

2. Discontinuity Fitness - We define the discontinuity fitness as the
average Gaussian Euclidean distance from a point on the ellipse
boundary, to an potential edge in the fine edge map E f (x,y),
for a given variance. To efficiently compute the discontinuity
fitness, we first compute the square Euclidean distance trans-
form of E f (x,y) using the linear time method presented in [15].
Then, using this, we compute the Gaussian Euclidean distance
transform (GEDT) [16, 17] for each point x in the image as:

gedtσ (x) = exp
(
−‖x− xn‖2

2σ2

)
where xn is the nearest edge point in the fine edge map, and σ2

is the variance. Let E = {x1, . . . ,xn} be the set of pixels that
lie on a rasterized approximation of the ellipse boundary. The
discontinuity fitness measure is then defined as:

Fd(E) =
1
n

n

∑
i=1

gedtσ (xi)

where n = |E| is the number of pixels that lie on the boundry.
Note that the fitness measure Fd(E) ∈ (0,1] and a fitness of 1
denotes a perfect fit to image discontinities.

3. Homogeneity - We define our homogeneity metric as the recip-
rocal of the color variance for pixels that lie within the ellipse.
Homogeneity could also be defined for texture in a more so-
phisticated implementation. A high degree of color or texture
homogeneity within the postulated ellipse serves as a good in-
dicator of fitness.

4. Application Requirements - In addition to the specific metrics
defined above, a particular application may use a priori knowl-
edge of the features of the ellipses present in the image. In our
application, we use a model of drum top colors and count the
number of pixels inside the ellipse that match the color model.
The model was trained in advance using a C4.5 tree classifier
[18].
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3.5 Handling Occlusions
Once an ellipse has been detected, we can eliminate that clusters
contributing to the ellipse from the search, and mark pixels in the
interior of the ellipse as “not contributing to cost”. The search is
then restarted allowing us to detect ellipses in the presence of inter-
ellipse occlusions. However, this strategy can lead to spurious de-
tections if we do not determine the degree of occlusion of an ellipse.
We compute the degree of occlusion as the ratio of the area of inter-
section with previously detected ellipses to the area of the current
ellipse. Computing the area of intersection of ellipses numerically
is non-trivial, so we approximate it using pixel counts within the
rasterized ellipses. If the degree of occlusion is large, the detected
ellipse is probably spurious.

4. DRUM HIT DETECTION

Let Ri = {x1...xmi} be the set of pixels that lie in the interior of the
ith detected ellipse (i ∈ [1,NR]). In order to detect drum hits, two
visual clues are considered: the impact of a drum stick on the top of
the instrument, and the motion of the instrument itself once it has
been hit.

4.1 Drum stick impact feature
Our initial attempts to track the drum sticks proved to be unsuccess-
ful for several reasons. Firstly, because our test material included
sequences played with sticks, mallets, brushes or bundled sticks, no
generic color model could be used to segment the sticks from the
foregrounds. Secondly, because of the limited frame rate of stan-
dard video cameras (our test material was recorded at 25 frames per
second), there is significant motion blur between frames preventing
the use of tracking methods. Consequently, we used a lower-level
approach based on foreground/background segmentation.

The background of the image is modeled as a mixture of 3 gaus-
sians. It is therefore possible to compute for each pixel x in each
image frame n the probability pB(x,n) that this pixel belongs to the
foreground. As described in [19], this model can be incrementally
adapted. This method efficiently extracts the silhouette of the drum-
mer forearms and the drum sticks. A first set of features measure
how many foreground pixels are present in each region of interest,
and uses the probability pB(x,n) as a soft membership function:

Si(n) =
mi

∑
i=1

pB(xi,n)

4.2 Instrument motion feature
In order to estimate motion intensity, a 5-taps differentiator filter
[20] is applied to each pixel brightness sequence I(x,n), to yield a
difference image D(x,n). The difference image is thresholded as :

D′(x,n) =
{

|D(x,n)| if |D(x,n)|> τ

0 otherwise

A motion intensity feature in each region of interest is then de-
fined as:

Mi(n) =
mi

∑
i=1

D′(xi,n)

4.3 Detection process
Both Si(n) and Mi(n) as defined above exhibit strong peaks when
the instrument associated to the region of interest i is hit. In the
case of Si(n), the detection function will typically exhibit a nar-
row triangle-shaped peak, maximal at the time of the impact (as the
sticks enters, then leaves the region). In the case of Mi(n) the de-
tection function will typically show a triangle-shaped contribution,
along with a decaying component after the time of the impact. The
decay of this component is longer in the case of the crash cymbals -
as they have more freedom of motion. Let rMi(n) and rSi(n) be func-
tions, maximal at m = 0, representing these typical peak shapes. We

propose the following model for the detection function Si (the same
developments can be applied to Mi):

{
Si(n) = w(n) when the instrument is not hit
Si(n) = w(n)+ArSi(n) when the instrument is hit

where w(n) is a gaussian noise of slowly varying means
and variance (µSi(n),σ2

Si
(n)), and A � σSi(n). Accordingly, the

detection process consists in the following steps. Firstly, the
slowly varying means and variances µm and σm are estimated
over 251-frame long windows centered at frame m, W (n) =
[Si(n−125) . . .Si(n) . . .Si(n+125)]. Classical estimators, such as
empirical mean and variance, cannot be used as the data is polluted
by outliers corresponding to occurences of drum hits. A somewhat
more accurate estimation can be obtained by considering the me-
dian of W (n) as an estimate of µSi(n); and the trimmed variance
(which consists in rejecting the 10% highest and lowest values of
W (n) before using the classical estimator) as an estimate of σ2

Si
(n).

Thus, the normalized detection function Si
′(n) = Si(n)−µSi (n)

σSi (n)
can be considered as a centered gaussian process of unitary vari-
ance, with pulses rSi(n) superposed. The detection can be achieved
by filtering Si

′(n) by the matched filter of impulse response rSi(−n),
yielding Si

′′(n), and by considering the probability that an observed
sample cannot be accounted by the background noise dSi(n) =

1− 1√
2π

exp
(
−Si

′′(n)2

2

)
.

This procedure produces for each region Ri two sequences of
probabilities dSi(n) and dMi(n), respectively expressing the proba-
bility that the drum sticks intersect the region Ri at frame n, and the
probability that the instrument corresponding to Ri is moving. A
drum hit should be detected when both of these events occur simul-
taneously. Thus, a conjunction rule (product) is used to aggregate
these probabilities, in order to obtain the posterior probability pi(n)
that the instrument corresponding to Ri has been played at frame n.
pi(n) can then be compared to a threshold to obtain the sequence of
frame indices (or instants) Hvideo

i at which the instrument associated
to Ri is hit.

5. MAPPING REGIONS TO INSTRUMENT CLASSES

In order to achieve a complete transcription of the performance, the
next step consists in labeling each region with a symbol indicating
the specific instrument of the drum kit (snare drum, hi-hat, etc.) it
contains. Let L j be the jth candidate label ( j ∈ [1,NL]). The label-
ing task consists in finding a mapping ϕ between the set of regions
and the set of labels. This task proves to be very challenging as
the material used for the evaluation contains a number of situations
(left-handed drummer, afro or salsa rhythms played mostly on the
toms rather than on the snare drums) defeating simple heuristics
based on the position of the regions with respect to the drummer,
or the frequency of hits. We consequently consider more robust
clues to perform this mapping: the color of the drum elements, and
the consistency of the events detected from the video stream with
a (partial) transcription obtained by an audio drum event detection
system.

5.1 Color criterion
The instruments in L j fall into two broad categories: drums (snare
drum and several sizes of toms), and cymbals (hi-hat, ride, crash or
splash cymbals). Let C (L j) be the category to which the label L j
belongs.

Cymbals are made from copper-based alloys and can be iden-
tified on the image from their color. Thus, for each detected re-
gion Ri, 16-bin hue, saturation and value histograms are computed,
yielding a feature vector Xi of dimension 48. A Support Vector Ma-
chine classifier using a Gaussian kernel is trained to discriminate
the elements of the drum kit into these two classes. Let C (Ri) the
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category assigned to the region Ri by this automatic classification
process. A compatibility matrix between labels and regions can thus
be defined as:

Ccolor
i, j = δ

C (L j)
C (Ri)

An example for such compatibility matrix with 4 labels and 2
regions is given in the table below.

Region Ri R1 R2

Label L j

XXXXXXXXC (L j)
C (Ri) Drum Cymbal

Snare drum Drum 1 0
Hi-hat Cymbal 0 1
Crash cymbal Cymbal 0 1
Medium Tom Drum 1 0

5.2 Consistency criterion
We assume at this stage that another transcription system, which
does not rely on the video modality, is available. This assumption is
realistic in applications where visual analysis is used to enhance an
existing audio drum transcription system of limited accuracy. Such
transcription systems (As described for example in [21, 22]) pro-
duce, for each instrument category L j, the sequence Haudio

j of in-
stants at which the instrument L j is played. If a region Ri is as-
sociated to the instrument L j, we expect the sequences of detected
events Hvideo

i and Haudio
j to be consistent, and to contain mostly el-

ements common to each other. In order to measure this consistency,
we propose the following criterion:

Ccons
i, j =

|Hvideo
i ∩Haudio

j |√
|Hvideo

i |
√
|Haudio

j |

where | · | denotes set cardinality. This criterion can be seen
either as the number of co-occurences normalized by the geomet-
ric mean of the number of events detected from each modality, or
as a binary version of the Pearson correlation between audio and
video detection functions. Because the audio and video classifiers
employ different time resolutions, and because they can detect the
same event with a slight delay, the elements of Hvideo

i and Haudio
i

are quantized on a 100 ms uniformly spaced grid.

5.3 Finding an optimal mapping
The two compatibility matrices previously obtained can be com-
bined to yield a global compatibility matrix between the labels and
regions Ci, j = Ccolor

i, j +Ccons
i, j . The optimal mapping ϕ∗ between the

regions and labels is the one yielding the maximum total compati-
bility, that is to say:

ϕ
∗ = argmax

ϕ
∑

i
Ci,ϕ(i)

This problem can be reformulated as finding a maximum
weight matching in a bipartite graph whose edge weights are de-
fined by the compatibility matrix w(e) = Ci, j if e = {Ri,L j}. The
Kuhn-Munkres algorithm [23] can efficiently solve this problem in
O(N3) where N = max{NL,NR}.

6. FUSION WITH OTHER DETECTORS

The video transcription process described in the previous sections
produces, for each instrument class L j the sequence p1

j(n) =
pφ−1( j)(n) of probabilities that this instrument is played at frame
n. When the scene is recorded by more than one video camera,
the analysis can be individually performed for each video stream.
Additionally, an audio transcription system can also be used. If Ns

Figure 2: Example of drum top extraction

Table 1: Drum top detection performances (precision and recall) for
each drummer and camera angle

Drummer 1 2 3
Angle 1 2 1 2 1 2

% Precision 100 100 73 83 100 100
% Recall 83 100 67 56 37 90

streams are considered, a final decision can be taken by fusing their
detectors’ outputs p1

j(n) . . . pNs
j (n). Assuming that the information

brought by each modality is accurate and complementary, a disjunc-
tive rule can be used to achieve this fusion:

p j(n) = 1−
Ns

∏
i=1

(1− pi
j(n))

7. EXPERIMENTAL RESULTS

The evaluation was conducted on 51 video sequences from the pub-
lic evaluation database [24]. Each sequence is captured from 2 dif-
ferent camera angles. The sequences were played by 3 drummers,
each of them playing on a different kit, on top of a background
music accompaniment – an adverse situation for audio-only drum
transcription systems. The average sequence length is 60 seconds,
and each sequence contains an average of 520 drum events (hits),
all manually annotated. The taxonomy uses different labels for
each kind of cymbal (splash, crash, ride) and each tom size (low,
medium, floor toms) – again information that is difficult to extract
from the audio signal only.

In order to evaluate the ellipse detection algorithm, one se-
quence was selected for each drummer and angle. The frames from
these sequences were averaged in advance in order to reduce occlu-
sions caused by the drummer. Table 1 presents the precision and
recall values obtained. Figure 2 displays an example of the output
of the procedure, with the detected drum tops highlighted.

Then, the entire drum transcription system described in figure
1 is evaluated. Note that the ellipse detection is, in this case, per-
formed on the average frame. As an intermediary result, table 2
presents the accuracy of the automatic region labeling process de-
scribed in section 5. Transcription results, obtained from several
sources of information (Audio, Video camera 1, Video camera 2)
are presented in table 3. The F-measure, which expresses a trade-
off between precision and recall, is used as a performance measure.
For comparison, transcription results using a semi-automatic sys-
tem (in which the drum top detection and region labeling processes
are performed by human operators) are also given.

It can be seen that visual analysis is better than the audio tran-
scription system at identifying toms and cymbal hits. Acceptable
performances can be achieved for the detection of snare drums and
hi-hat hits, though the detection is not as accurate as on the audio
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Table 2: Instrument identification accuracy for each drummer and
camera angle

Drummer 1 2 3
Angle 1 2 1 2 1 2

% Accuracy 64 76 60 73 72 64

Table 3: Transcription accuracy (% F-measure) for each instrument
of the drum kit, using various combinations of the audio and video
streams

Unimodal Multimodal
Audio • • • •

Video angle 1 • • • •
Video angle 2 • • • •

Manual segmentation and labeling
Bass drum 69 40 0 40 66 69 66

Snare drum 63 52 45 53 72 69 71
Toms 7 11 14 14 11 18 20

Hi-hat 78 63 67 70 75 79 77
Cymbals 17 27 28 28 23 26 28

Automatic segmentation and labeling
Bass drum 69 0 0 0 69 69 69

Snare drum 63 49 36 51 69 66 69
Toms 7 12 21 22 16 18 18

Hi-hat 78 48 63 66 77 77 77
Cymbals 17 29 29 30 27 27 29

signal. This complementarity is well-exploited by the disjunctive
fusion rule, whose performances per instrument, when manual seg-
mentation is used, are similar or better than the best of the unimodal
approaches. Interestingly, the automatic approach can yield in some
cases better results than the manual annotation – some of the mis-
aligned or spurious ellipses obtained by the segmentation process
can allow a more precise detection that an ellipse precisely fitting
the edges of the drum top. This suggests that the most relevant re-
gions of interest to detect drum hits might not be the drum top them-
selves, the regions could rather be extended to include the stick and
drummer forearms.

8. CONCLUSION AND FUTURE WORK

This paper presented a video drum transcription system, with an
emphasis on the image segmentation front-end. This system, which
requires no calibration and no prior training, has been tested on a
large and diverse database, and showed improvement over audio-
only approaches for the detection of tom and cymbal hits. A fusion
of the audio and video transcriptions is possible with a disjunction
rule, as both modalities provide complementary information. Fu-
ture work will investigate the use of multimodal approaches at the
feature level, rather than at the decision level. Especially, the extrac-
tion of individual audio/visual components by Non-negative Ma-
trix Factorization could provide both a segmentation of the image
into non-geometrically constrained regions of interest, and detec-
tion functions for each component.
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