30 research outputs found

    Validity of an inertial sensor-based system for the assessment of spatio-temporal parameters in people with multiple sclerosis

    Get PDF
    BackgroundGait variability in people with multiple sclerosis (PwMS) reflects disease progression or may be used to evaluate treatment response. To date, marker-based camera systems are considered as gold standard to analyze gait impairment in PwMS. These systems might provide reliable data but are limited to a restricted laboratory setting and require knowledge, time, and cost to correctly interpret gait parameters. Inertial mobile sensors might be a user-friendly, environment- and examiner-independent alternative. The purpose of this study was to evaluate the validity of an inertial sensor-based gait analysis system in PwMS compared to a marker-based camera system.MethodsA sample N = 39 PwMS and N = 19 healthy participants were requested to repeatedly walk a defined distance at three different self-selected walking speeds (normal, fast, slow). To measure spatio-temporal gait parameters (i.e., walking speed, stride time, stride length, the duration of the stance and swing phase as well as max toe clearance), an inertial sensor system as well as a marker-based camera system were used simultaneously.ResultsAll gait parameters highly correlated between both systems (r > 0.84) with low errors. No bias was detected for stride time. Stance time was marginally overestimated (bias = −0.02 ± 0.03 s) and gait speed (bias = 0.03 ± 0.05 m/s), swing time (bias = 0.02 ± 0.02 s), stride length (0.04 ± 0.06 m), and max toe clearance (bias = 1.88 ± 2.35 cm) were slightly underestimated by the inertial sensors.DiscussionThe inertial sensor-based system captured appropriately all examined gait parameters in comparison to a gold standard marker-based camera system. Stride time presented an excellent agreement. Furthermore, stride length and velocity presented also low errors. Whereas for stance and swing time, marginally worse results were observed

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    The Diagnostic Scope of Sensor-Based Gait Analysis in Atypical Parkinsonism: Further Observations

    Get PDF
    Background: Differentiating idiopathic Parkinson's disease (IPD) from atypical Parkinsonian disorders (APD) is challenging, especially in early disease stages. Postural instability and gait difficulty (PIGD) are substantial motor impairments of IPD and APD. Clinical evidence implies that patients with APD have larger PIGD impairment than IPD patients. Sensor-based gait analysis as instrumented bedside test revealed more gait deficits in APD compared to IPD. However, the diagnostic value of instrumented bedside tests compared to clinical assessments in differentiating APD from IPD patients have not been evaluated so far.Objective: The objectives were (a) to evaluate whether sensor-based gait parameters provide additional information to validated clinical scores in differentiating APD from matched IPD patients, and (b) to investigate if objective, instrumented gait assessments have comparable discriminative power to clinical scores.Methods: In a previous study we have recorded instrumented gait parameters in patients with APD (Multiple System Atrophy and Progressive Supranuclear Palsy). Here, we compared gait parameters to those of retrospectively pairwise disease duration-, age-, and gender-matched IPD patients in order to address this new research questions. To this aim, the PIGD score was calculated as sum of the MDS-UPDRS-3-items “gait,” “postural stability,” “arising from chair,” and “posture.” Gait characteristics were evaluated in standardized gait tests using an instrumented, sensor-based gait analysis system. Machine learning algorithms were used to extract spatio-temporal gait parameters. Receiver Operating Characteristic analysis was performed in order to detect the discriminative power of the instrumented vs. the clinical bedside tests in differentiating IPD from APD.Results: Sensor-based stride length, gait velocity, toe off angle, and parameters representing gait variability significantly differed between IPD and APD groups. ROC analysis revealed a high Area Under the Curve (AUC) for PIGD score (0.919), and UPDRS-3 (0.848). Particularly, the objective parameters stance time variability (0.841), swing time variability (0.834), stride time variability (0.821), and stride length variability (0.804) reached high AUC's as well.Conclusions: PIGD symptoms showed high discriminative power in differentiating IPD from APD supporting gait disorders as substantial diagnostic target. Sensor-based gait variability parameters provide metric, objective added value, and serve as complementary outcomes supporting clinical diagnostics and long-term home-monitoring concepts

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol

    Get PDF
    Background: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. Methods/design: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson’s Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. Discussion: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. Trial registration: ISRCTN12051706

    Random Whole Body Vibration over 5 Weeks Leads to Effects Similar to Placebo: A Controlled Study in Parkinson’s Disease

    Get PDF
    Background. Random whole body vibration (WBV) training leads to beneficial short-term effects in patients with Parkinson’s disease (PD). However, the effect of WBV lasting several weeks is not clear. Objectives. The aim of this study was to assess a random WBV training over 5 weeks in PD. Methods. Twenty-one participants with PD were allocated to either an experimental or a placebo group matched by age, gender, and Hoehn&Yahr stage. The WBV training consisted of 5 series, 60 s each. In the placebo group, vibration was simulated. The primary outcome was the change of performance in Functional reach test (FRT), step-walk-turn task, biomechanical Gait Analysis, Timed up and go test (TUG), and one leg stance. Findings. In most of the parameters, there was no significant interaction of “timegroup.” Both groups improved significantly in Gait parameters, TUG, and one leg stance. Only in the FRT [; ] and in the TUG [; ] the experimental group performed significantly better than the placebo group. Conclusions. Random WBV training over 5 weeks seems to be less effective than reported in previous studies performing short-term training. The slight improvements in the FRT and TUG are not clinically relevant

    Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters

    No full text
    The purpose of this study was to assess the concurrent validity and test–retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson’s disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test–retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters ( r>0.93 ). The bias for stride time was 0±16 ms and for stride length was 1.4±6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system’s high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible

    Synchronized Sensor Insoles for Clinical Gait Analysis in Home-Monitoring Applications

    No full text
    Wearable sensor systems are of increasing interest in clinical gait analysis. However, little information about gait dynamics of patients under free living conditions is available, due to the challenges of integrating such systems unobtrusively into a patient’s everyday live. To address this limitation, new, fully integrated low power sensor insoles are proposed, to target applications particularly in home-monitoring scenarios. The insoles combine inertial as well as pressure sensors and feature wireless synchronization to acquire biomechanical data of both feet with a mean timing offset of 15.0 μs. The proposed system was evaluated on 15 patients with mild to severe gait disorders against the GAITRite® system as reference. Gait events based on the insoles’ pressure sensors were manually extracted to calculate temporal gait features such as double support time and double support. Compared to the reference system a mean error of 0.06 s ±0.06 s and 3.89 % ±2.61 % was achieved, respectively. The proposed insoles proved their ability to acquire synchronized gait parameters and address the requirements for home-monitoring scenarios, pushing the boundaries of clinical gait analysis

    Mobile digital gait analysis objectively measures progression in hereditary spastic paraplegia

    No full text
    Abstract Progressive spasticity and gait impairment is the functional hallmark of hereditary spastic paraplegia (HSP), but due to inter‐individual variability, longitudinal studies on its progression are scarce. We investigated the progression of gait deficits via mobile digital measurements in conjunction with clinical and patient‐reported outcome parameters. Our cohort included adult HSP patients (n = 55) with up to 77 months of follow‐up. Gait speed showed a significant association with SPRS progression. Changes in stride time and gait variability correlated to fear of falling and quality of life, providing evidence that gait parameters are meaningful measures of HSP progression

    Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis

    No full text
    Background!#!Multiple sclerosis (MS) is a disabling disease affecting the central nervous system and consequently the whole body's functional systems resulting in different gait disorders. Fatigue is the most common symptom in MS with a prevalence of 80%. Previous research studied the relation between fatigue and gait impairment using stationary gait analysis systems and short gait tests (e.g. timed 25 ft walk). However, wearable inertial sensors providing gait data from longer and continuous gait bouts have not been used to assess the relation between fatigue and gait parameters in MS. Therefore, the aim of this study was to evaluate the association between fatigue and spatio-temporal gait parameters extracted from wearable foot-worn sensors and to predict the degree of fatigue.!##!Methods!#!Forty-nine patients with MS (32 women; 17 men; aged 41.6 years, EDSS 1.0-6.5) were included where each participant was equipped with a small Inertial Measurement Unit (IMU) on each foot. Spatio-temporal gait parameters were obtained from the 6-min walking test, and the Borg scale of perceived exertion was used to represent fatigue. Gait parameters were normalized by taking the difference of averaged gait parameters between the beginning and end of the test to eliminate inter-individual differences. Afterwards, normalized parameters were transformed to principle components that were used as input to a Random Forest regression model to formulate the relationship between gait parameters and fatigue.!##!Results!#!Six principal components were used as input to our model explaining more than 90% of variance within our dataset. Random Forest regression was used to predict fatigue. The model was validated using 10-fold cross validation and the mean absolute error was 1.38 points. Principal components consisting mainly of stride time, maximum toe clearance, heel strike angle, and stride length had large contributions (67%) to the predictions made by the Random Forest.!##!Conclusions!#!The level of fatigue can be predicted based on spatio-temporal gait parameters obtained from an IMU based system. The results can help therapists to monitor fatigue before and after treatment and in rehabilitation programs to evaluate their efficacy. Furthermore, this can be used in home monitoring scenarios where therapists can monitor fatigue using IMUs reducing time and effort of patients and therapists

    Functional gait measures correlate to fear of falling, and quality of life in patients with Hereditary Spastic Paraplegia: A cross-sectional study

    No full text
    Objective: Gait impairment is the cardinal motor symptom in hereditary spastic paraplegias (HSPs) possibly linked to increased fear of falling and reduced quality of life (QoL). Disease specific symptoms in HSP are rated using the Spastic Paraplegia Rating Scale (SPRS). However, limited studies evaluated more objectively easy-to-apply gait measures by comparing these standardized assessments with patients' self-perceived impairment and clinically established scores. Therefore, the aim of this study was to correlate functional gait measures with self rating questionnaires for fear of falling and QoL, and with the SPRS as clinical gold standard. Methods: HSP patients ("pure" phenotype, n = 22) fulfilling the clinical diagnostic criteria for HSP and age-and gender-matched healthy subjects (n = 22) were included in this study. Motor impairment was evaluated using the SPRS, fear of falling by the Falls Efficacy Scale-International (FES-I), and QoL by SF-12. Functional gait measures included gait speed and step length (10-meter-walk-test), the Timed up and go test (TUG), and maximum walking distance (2-min-walking-test). Results: Functional gait measures correlated to fear of falling (gait speed: r =-0.726; step length: r =-0.689; TUG: r = 0.721; 2-min: r =-0.709) and the physical component of QoL (gait speed: r = 0.541; step length: r = 0.531; TUG: r =-0.512; 2-min: r = 0.548). Furthermore, FES-I (r = 0.767) and QoL (r =-0.728) correlated with the clinical gold standard (SPRS). Gait measures strongly correlated with SPRS (gait speed: r =-0.787; step length: r =-0.821; TUG: r = 0.756; 2-min: r =-0.791). Conclusion: Functional gait measures reflect fear of falling, QoL, and mobility in HSP. The metric, semi quantitative gait measures complement the clinician's evaluation and support the clinical workup by more objective parameters
    corecore