3,758 research outputs found

    L∞ spaces and derived loop spaces

    No full text
    a

    Silicon-based organic light-emitting diode operating at a wavelength of 1.5 mu m

    Get PDF
    Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Applied Physics Letters 77, 2271 (2000) and may be found at

    Concentration dependent interdiffusion in InGaAs/GaAs as evidenced by high resolution x-ray diffraction and photoluminescence spectroscopy

    Get PDF
    Article copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Journal of Applied Physics 97, 013536 (2005) and may be found at

    Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change

    Get PDF
    We report a monolithically integrated InGaAsP DBR ridge waveguide laser that uses the quantum-confined Stark effect (QCSE) to achieve fast tuning response. The laser incorporates three sections: a forward-biased gain section, a reverse-biased phase section, and a reverse-biased DBR tuning section. The laser behavior is modeled using transmission matrix equations and tuning over similar to 8 nm is predicted. Devices were fabricated using post-growth shallow ion implantation to reduce the loss in the phase and DBR sections by quantum well intermixing. The lasing wavelength was measured while varying the reverse bias of the phase and DBR sections in the range 0 V to < - 2.5 V. Timing was noncontinuous over a similar to 7-nm-wavelength range, with a side-mode suppression ratio of similar to 20 dB. Coupled cavity effects due to the fabrication method used introduced discontinuities in tuning. The frequency modulation (FM) response was measured to be uniform within 2 dB over the frequency range 10 MHz to 10 GHz, indicating that tuning times of 100 ps are possible

    The holomorphic bosonic string

    Get PDF
    We present a holomorphic version of the bosonic string in the formalism of quantum field theory developed by Costello and collaborators. In this paper we focus on the case in which space-time is flat and construct a one-loop exact quantization. Starting from first principles, we arrive at the critical dimension as an obstruction to satisfying the quantum master equation. Moreover, we show how the factorization algebra recovers the BRST cohomology of the string and give another construction of the Gerstenhaber structure. Finally, we show how the factorization homology along closed manifolds encodes the determinant line bundle over the moduli space of Riemann surfaces.Comment: Fixed typos and clarified exposition. Modified Section

    Higher Kac-Moody algebras and symmetries of holomorphic field theories

    Get PDF
    We introduce a higher dimensional generalization of the affine Kac-Moody algebra using the language of factorization algebras. In particular, on any complex manifold there is a factorization algebra of "currents" associated to any Lie algebra. We classify local cocycles of these current algebras, and compare them to central extensions of higher affine algebras recently proposed by Faonte-Hennion-Kapranov. A central goal of this paper is to witness higher Kac-Moody algebras as symmetries of a class of holomorphic quantum field theories. In particular, we prove a generalization of the free field realization of an affine Kac-Moody algebra and also develop the theory of q-characters for this class of algebras in terms of factorization homology. Finally, we exhibit the "large N" behavior of higher Kac-Moody algebras and their relationship to symmetries of non-commutative field theories.Comment: All around improvements to exposition. Added Section 5: Large N Limit

    A one-loop exact quantization of Chern-Simons theory

    Get PDF
    We examine Chern-Simons theory as a deformation of a 3-dimensional BF theory that is partially holomorphic and partially topological. In particular, we introduce a novel gauge that leads naturally to a one-loop exact quantization of this BF theory and Chern-Simons theory. This approach illuminates several important features of Chern-Simons theory, notably the bulk-boundary correspondence of Chern-Simons theory with chiral WZW theory. In addition to rigorously constructing the theory, we also explain how it applies to a large class of closely related 3-dimensional theories and some of the consequences for factorization algebras of observables.Comment: 35 pages, 1 figur
    • …
    corecore