3,289 research outputs found
Recommended from our members
Evidence of convection as a major source of condensation nuclei in the northern midlatitude upper troposphere
Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment
Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC. Copyright 2000 by the American Geophysical Union
What are Marine Ecological Time Series telling us about the Ocean? A status Report. Chapter 6 Southern Ocean
Impact of aircraft emissions on reactive nitrogen over the North Atlantic Flight Corridor region
Wall-Crossing in Coupled 2d-4d Systems
We introduce a new wall-crossing formula which combines and generalizes the
Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d
systems respectively. This 2d-4d wall-crossing formula governs the
wall-crossing of BPS states in an N=2 supersymmetric 4d gauge theory coupled to
a supersymmetric surface defect. When the theory and defect are compactified on
a circle, we get a 3d theory with a supersymmetric line operator, corresponding
to a hyperholomorphic connection on a vector bundle over a hyperkahler space.
The 2d-4d wall-crossing formula can be interpreted as a smoothness condition
for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can
be determined for 4d theories of class S, that is, for those theories obtained
by compactifying the six-dimensional (0,2) theory with a partial topological
twist on a punctured Riemann surface C. For such theories there are canonical
surface defects. We illustrate with several examples in the case of A_1
theories of class S. Finally, we indicate how our results can be used to
produce solutions to the A_1 Hitchin equations on the Riemann surface C.Comment: 170 pages, 45 figure
A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy
© 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
The timing of mandibular tooth formation in two African groups
Background: Ethnic differences in the timing of human tooth development are unclear. Aim: To describe similarities and differences in the timing of tooth formation in two groups of Sudanese children and young adults. Subjects and methods: The sample consisted of healthy individuals from Khartoum, Sudan, aged 2–23 years. The Northern group was of Arab origin (848 males, 802 females) and the Western group was of African origin (846 males, 402 females). Each mandibular left permanent tooth from first incisor to third molar was assessed from dental radiographs into one of 15 development stages. Mean ages at entry for 306 tooth stages were calculated using probit regression in males/females in each group and compared using a t-test. Results: Mean ages were not significantly different in most tooth stage comparisons between ethnic groups for both males (61/75) and females (56/76), despite a tendency of earlier mean ages in the Western group. Mean ages for most tooth stage comparisons between males and females (137/155) were not significantly different within ethnic groups suggesting low sexual dimorphism. Conclusion: The mean ages of most mandibular tooth formation stages were generally not significantly different between ethnic groups or between males and females in this study
Bottom mixed layer oxygen dynamics in the Celtic Sea
The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
Baryon Washout, Electroweak Phase Transition, and Perturbation Theory
We analyze the conventional perturbative treatment of sphaleron-induced
baryon number washout relevant for electroweak baryogenesis and show that it is
not gauge-independent due to the failure of consistently implementing the
Nielsen identities order-by-order in perturbation theory. We provide a
gauge-independent criterion for baryon number preservation in place of the
conventional (gauge-dependent) criterion needed for successful electroweak
baryogenesis. We also review the arguments leading to the preservation
criterion and analyze several sources of theoretical uncertainties in obtaining
a numerical bound. In various beyond the standard model scenarios, a realistic
perturbative treatment will likely require knowledge of the complete two-loop
finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
A novel holographic model of chiral symmetry breaking has been proposed by
Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and
anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the
probe flavours in this model in the presence of finite temperature and a
constant electromagnetic field. In keeping with the weakly coupled field theory
intuition, we find the magnetic field promotes spontaneous breaking of chiral
symmetry whereas the electric field restores it. The former effect is
universally known as the "magnetic catalysis" in chiral symmetry breaking. In
the presence of an electric field such a condensation is inhibited and a
current flows. Thus we are faced with a steady-state situation rather than a
system in equilibrium. We conjecture a definition of thermodynamic free energy
for this steady-state phase and using this proposal we study the detailed phase
structure when both electric and magnetic fields are present in two
representative configurations: mutually perpendicular and parallel.Comment: 50 pages, multiple figures, minor typo fixed, references adde
- …
