243 research outputs found

    Detection and localization of double compression in MP3 audio tracks

    Get PDF
    In this work, by exploiting the traces left by double compression in the statistics of quantized modified discrete cosine transform coefficients, a single measure has been derived that allows to decide whether an MP3 file is singly or doubly compressed and, in the last case, to devise also the bit-rate of the first compression. Moreover, the proposed method as well as two state-of-the-art methods have been applied to analyze short temporal windows of the track, allowing the localization of possible tampered portions in the MP3 file under analysis. Experiments confirm the good performance of the proposed scheme and demonstrate that current detection methods are useful for tampering localization, thus offering a new tool for the forensic analysis of MP3 audio tracks

    Friction and wear properties of nano-Si<inf>3</inf>N<inf>4</inf>/nano-SiC composite under nanolubricated conditions

    Get PDF
    Friction and wear properties of nano-Si3N4/nano-SiC composite were studied under nanolubricated conditions. Mineral oil mixed with nanoparticles of diamond was used as lubricant. A friction coefficient of 0.043 and a wear coefficient of 4.2×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil + 0.5 wt% nanodiamond, whereas a friction coefficient of 0.077 and a wear coefficient of 10.3×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil. 3D surface profilometer was used to study the surface morphology of wear scars. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were conducted to illustrate reduction in friction and wear

    Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells.</p> <p>Methods</p> <p>Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay.</p> <p>Results</p> <p>DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure.</p> <p>Conclusion</p> <p>DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.</p

    Two Odorant-Binding Proteins Mediate the Behavioural Response of Aphids to the Alarm Pheromone (E)-ß-farnesene and Structural Analogues

    Get PDF
    Abstract Background: Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals. Methodology/Principal Findings: To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone. Conclusions: Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests

    Short- and long-term outcomes of single bare metal stent versus drug eluting stent in nondiabetic patients with a simple de novo lesion in the middle and large vessel

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>This study was aimed to investigate the short- and long-term outcomes of percutaneous coronary intervention (PCI) between single bare metal stent (BMS) and single drug eluting stent (DES) in nondiabetic patients with a simple de novo lesion in the middle and large vessel.</p> <p>Methods</p> <p>Two hundred and thirty-five consecutive patients with a simple de novo lesion in the middle and large vessel were treated with BMS or DES in our hospital from Apr. 2004 to Dec. 2004.</p> <p>The inclusion criteria: a simple de novo lesion in the middle and large vessel, stent diameter ≥ 3.0 mm, stent length ≤ 18 mm, the exclusion criteria: diabetes mellitus, left main trunk disease and left ventricular ejection fraction ≤ 30%. Of them, there were 150 patients in BMS group and 85 patients in DES group, and the rates of lost to follow up were 6.7% and 1.2% respectively.</p> <p>Results</p> <p>BMS group had lower hypercholesteremia rate (22.0% vs 38.8%) and higher proportion of TIMI grade 0 (12% vs 1.2%) than DES group (all P < 0.05), but both groups had similar stent length (16.16 ± 2.81 mm vs 16.06 ± 2.46 mm) and stent diameter (3.85 ± 3.07 mm vs 3.19 ± 0.24 mm) after procedure, in-segment restenosis rate (0% vs 1.2%) and target lesion revascularization (TLR, 2.0% vs 2.4%) at 6-month follow-up (all P > 0.05). No difference was found in TLR (1.3% vs 1.2%, P = 1.00) and recurrent myocardial infarction (Re-MI) (0% vs 1.2%, P = 0.36), cardiac death (0.7% vs 1.2%, P = 1.00) between 1- and 3-year. So were TLR (6.0% vs 5.9%, P = 0.97), Re-MI (0% vs 2.4%, P = 0.06), cardiac death (2.0% vs 3.5%, P = 0.48) and major adverse cardiac events (MACE, 8.7% vs 10.6%, P = 0.63), cardiac death-free cumulative survival (98.7% vs 97.7%, P = 0.56), TLR-free cumulative survival (94.0% vs 94.1%, P = 0.98) and Re-MI-free cumulative survival (100% vs 97.7%, P = 0.06) at 3-year follow-up.</p> <p>Conclusion</p> <p>The single BMS has similar efficacy and safety to single DES in nondiabetic patients with a simple de novo lesion in the middle and large vessel at short- and long-term follow-up.</p

    Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes

    Get PDF
    The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.Singapore. Agency for Science, Technology and Research (National Science Scholarship )Massachusetts Institute of Technology (Eugene Bell Career Development Chair)National Science Foundation (U.S.) (Award No. DBI-0821391)Pfizer Inc

    Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Get PDF
    BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy

    Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

    Get PDF
    Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins
    • …
    corecore