7 research outputs found

    Population Analysis of the Fusarium graminearum Species Complex from Wheat in China Show a Shift to More Aggressive Isolates

    Get PDF
    A large number of Fusarium isolates was collected from blighted wheat spikes originating from 175 sampling sites, covering 15 provinces in China. Species and trichothecene chemotype determination by multilocus genotyping (MLGT) indicated that F. graminearum s. str. with the 15-acetyl deoxynivalenol (15ADON) chemotype and F. asiaticum with either the nivalenol (NIV) or the 3-acetyl deoxynivalenol (3ADON) chemotype were the dominant causal agents. Bayesian model-based clustering with allele data obtained with 12 variable number of tandem repeats (VNTR) markers, detected three genetic clusters that also show distinct chemotypes. High levels of population genetic differentiation and low levels of effective number of migrants were observed between these three clusters. Additional genotypic analyses revealed that F. graminearum s. str. and F. asiaticum are sympatric. In addition, composition analysis of these clusters indicated a biased gene flow from 3ADON to NIV producers in F. asiaticum. In phenotypic analyses, F. asiaticum that produce 3ADON revealed significant advantages over F. asiaticum that produce NIV in pathogenicity, growth rate, fecundity, conidial length, trichothecene accumulation and resistance to benzimidazole. These results suggest that natural selection drives the spread of a more vigorous, more toxigenic pathogen population which also shows higher levels of fungicide resistance

    Genome-wide analysis of Fusarium graminearum field populations reveals hotspots of recombination

    No full text
    BACKGROUND: Fusarium graminearum (Fg) is a ubiquitous pathogen of wheat, barley and maize causing Fusarium head blight. Large annual yield losses and contamination of foodstuffs with harmful mycotoxins make Fg one of the most-studied plant pathogens. Analyses of natural field populations can lead to a better understanding of the evolutionary processes affecting this pathogen. Restriction site associated DNA sequencing (RADseq) was used to conduct population genomics analyses including 213 pathogen isolates from 13 German field populations of Fg. RESULTS: High genetic diversity was found within Fg field populations and low differentiation (F(ST) = 0.003) was found among populations. Linkage disequilibrium (LD) decayed rapidly over a distance of 1000 bp. The low multilocus LD indicates that significant sexual recombination occurs in all populations. Several recombination hotspots were detected on each chromosome, but different chromosomes showed different levels of recombination. There was some evidence for selection hotspots. CONCLUSIONS: The population genomic structure of Fg is consistent with a high degree of sexual recombination that is not equally distributed across the chromosomes. The high gene flow found among these field populations should enable this pathogen to adapt rapidly to changes in its environment, including deployment of resistant cultivars, applications of fungicides and a warming climate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2166-0) contains supplementary material, which is available to authorized users
    corecore