25 research outputs found

    Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression

    Get PDF
    BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p

    Propylthiouracil Is Teratogenic in Murine Embryos

    Get PDF
    Background: Hyperthyroidism during pregnancy is treated with the antithyroid drugs (ATD) propylthiouracil (PTU) and methimazole (MMI). PTU currently is recommended as the drug of choice during early pregnancy. Yet, despite widespread ATD use in pregnancy, formal studies of ATD teratogenic effects have not been performed. Methods: We examined the teratogenic effects of PTU and MMI during embryogenesis in mice. To span different periods of embryogenesis, dams were treated with compounds or vehicle daily from embryonic day (E) 7.5 to 9.5 or from E3.5 to E7.5. Embryos were examined for gross malformations at E10.5 or E18.5 followed by histological and micro-CT analysis. Influences of PTU on gene expression levels were examined by RNA microarray analysis. Results: When dams were treated from E7.5 to E9.5 with PTU, neural tube and cardiac abnormalities were observed at E10.5. Cranial neural tube defects were significantly more common among the PTU-exposed embryos than those exposed to MMI or vehicle. Blood in the pericardial sac, which is a feature indicative of abnormal cardiac function and/or abnormal vasculature, was observed more frequently in PTU-treated than MMI-treated or vehicle-treated embryos. Following PTU treatment, a total of 134 differentially expressed genes were identified. Disrupted genetic pathways were those associated with cytoskeleton remodeling and keratin filaments. At E 18.5, no gross malformations were evident in either ATD group, but the number of viable PTU embryos per dam at E18.5 was significantly lower from those at E10.5, indicating loss o

    Proteome-Wide Analysis of Single-Nucleotide Variations in the N-Glycosylation Sequon of Human Genes

    Get PDF
    N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs

    Aplasia cutis congenita in surviving co-twin after propylthiouracil exposure in utero

    No full text
    Aplasia cutis congenita (ACC) has been observed after fetal exposure to the antithyroid drug methimazole (MMI), but not reported after propylthiouracil (PTU), the current antithyroid drug of choice during pregnancy. This occurrence has implications for patient information and causal research
    corecore