55 research outputs found

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I

    Finding one's way in proteomics: a protein species nomenclature

    Get PDF
    Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available

    TRAIL promotes caspase-dependent pro-inflammatory responses via PKCδ activation by vascular smooth muscle cells

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is best known for its selective cytotoxicity against transformed tumor cells. Most non-transformed primary cells and several cancer cell lines are not only resistant to death receptor-induced apoptosis, but also subject to inflammatory responses in a nuclear factor-κB (NF-κB)-dependent manner. Although the involvement of TRAIL in a variety of vascular disorders has been proposed, the exact molecular mechanisms are unclear. Here, we aimed to delineate the role of TRAIL in inflammatory vascular response. We also sought possible molecular mechanisms to identify potential targets for the prevention and treatment of post-angioplastic restenosis and atherosclerosis. Treatment with TRAIL increased the expression of intercellular adhesion molecule-1 by primary human vascular smooth muscle cells via protein kinase C (PKC)δ and NF-κB activation. Following detailed analysis using various PKCδ mutants, we determined that PKCδ activation was mediated by caspase-dependent proteolysis. The protective role of PKCδ was further confirmed in post-traumatic vascular remodeling in vivo. We propose that the TRAIL/TRAIL receptor system has a critical role in the pathogenesis of inflammatory vascular disorders by transducing pro-inflammatory signals via caspase-mediated PKCδ cleavage and subsequent NF-κB activation

    Correction of the Delta Phe508 Cystic Fibrosis Transmembrane Conductance Regulator Trafficking Defect by the Bioavailable Compound Glafenine

    No full text
    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated anion channel expressed in epithelial cells. The most common mutation Delta Phe508 leads to protein misfolding, retention by the endoplasmic reticulum, and degradation. One promising therapeutic approach is to identify drugs that have been developed for other indications but that also correct the CFTR trafficking defect, thereby exploiting their known safety and bioavailability in humans and reducing the time required for clinical development. We have screened approved, marketed, and off-patent drugs with known safety and bioavailability using a Delta Phe508-CFTR trafficking assay. Among the confirmed hits was glafenine, an anthranilic acid derivative with analgesic properties. Its ability to correct the misprocessing of CFTR was confirmed by in vitro and in vivo studies using a concentration that is achieved clinically in plasma (10 mu M). Glafenine increased the surface expression of Delta Phe508-CFTR in baby hamster kidney (BHK) cells to similar to 40% of that observed for wild-type CFTR, comparable with the known CFTR corrector 4-cyclohexyloxy-2-{1-[4-(4-methoxybenzensulfonyl)-piperazin-1-yl]-ethyl} -quinazoline (VRT-325). Partial correction was confirmed by the appearance of mature CFTR in Western blots and by two assays of halide permeability in unpolarized BHK and human embryonic kidney cells. Incubating polarized CFBE41o(-) monolayers and intestines isolated from Delta Phe508-CFTR mice (treated ex vivo) with glafenine increased the short-circuit current (I-sc) response to forskolin + genistein, and this effect was abolished by 10 mu M CFTRinh 172. In vivo treatment with glafenine also partially restored total salivary secretion. We conclude that the discovery of glafenine as a CFTR corrector validates the approach of investigating existing drugs for the treatment of CF, although localized delivery or further medicinal chemistry may be needed to reduce side effects
    corecore