126 research outputs found

    Composition of lower urinary tract stones in canines in Mexico City

    Get PDF
    11th International symposium on urolithiasis, Nice, France, 2–5 September 2008 Urological Research (2008) 36:157–232. doi:10.1007/s00240-008-0145-5. http://www.springerlink.com/ content/x263655772684210/fulltext.pdf.Effective long-term management of urolithiasis depends on identification and manipulation of factors contributing to initial stone formation; identification of these factors depends on accurate identification of the mineral composition of the urolith involved. The purpose of this study was to determine the chemical composition of uroliths obtained from the low urinary tract of dogs in Mexico City. One hundred and five cases of urolithiasis were studied in which stones were surgically obtained from the low urinary tracts of dogs treated in different hospitals. The chemical composition of the uroliths was quantita- tively and qualitatively determined by stereoscopic microscopy, IR-spectroscopy, scanning electron micros- copy and X-ray microanalysis. Age of animals ranged from 4 months to 14 years, with a median of 5 years. Compo- sition and distribution of the uroliths were struvite 38.1%,calcium oxalate 26.7%, silica 13.3%, urate 7.6%, mixed 11.4%, compounds 1.9%, and cystine 1%. Most uroliths were found in pure breed dogs (75.2%); 23 different breeds were identified, and more than half of the submissions were from breeds of small size. In our study, the frequency of struvite, calcium oxalate, cystine, urates, mixed and com- pounds stones are in agreement with papers that report on dog populations in America and Europe, but a higher fre- quency of silica uroliths was observed in Mexico City dogs.This work has been partially supported by a project of Waltham Foundation in Mexico

    Down-Regulation of Honey Bee IRS Gene Biases Behavior toward Food Rich in Protein

    Get PDF
    Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera) could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS) expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS). By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi), we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen) rather than toward carbohydrate (nectar) sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources

    Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour

    Get PDF
    available in PMC 2012 June 22.Heritable variation in behavioural traits generally has a complex genetic basis1, and thus naturally occurring polymorphisms that influence behaviour have been defined in only rare instances2,3. The isolation of wild strains of Caenorhabditis elegans has facilitated the study of natural genetic variation in this species4 and provided insights into its diverse microbial ecology5. C. elegans responds to bacterial infection with conserved innate immune responses6-8 and, while lacking the immunological memory of vertebrate adaptive immunity, exhibits an aversive learning response to pathogenic bacteria9. Here, we report the molecular characterization of naturally occurring coding polymorphisms in a C. elegans gene encoding a conserved HECT domain-containing E3 ubiquitin ligase, HECW-1. We show that two distinct polymorphisms in neighbouring residues of HECW-1 each affect C. elegans behavioural avoidance of a lawn of Pseudomonas aeruginosa. Neuronspecific rescue and ablation experiments, and genetic interaction analysis suggest that HECW-1 functions in a pair of sensory neurons to inhibit P. aeruginosa lawn avoidance behaviour through inhibition of the neuropeptide receptor NPR-110, which we have previously shown promotes P. aeruginosa lawn avoidance behaviour11. Our data establish a molecular basis for natural variation in a C. elegans behaviour that may undergo adaptive changes in response to microbial pathogens.National Institutes of Health (U.S.) (NIH Grant GM084477

    Activation of Estrogen Receptor-α by E2 or EGF Induces Temporally Distinct Patterns of Large-Scale Chromatin Modification and mRNA Transcription

    Get PDF
    Estrogen receptor-α (ER) transcription function is regulated in a ligand-dependent (e.g., estradiol, E2) or ligand-independent (e.g., growth factors) manner. Our laboratory seeks to understand these two modes of action. Using a cell line that contains a visible prolactin enhancer/promoter array (PRL-HeLa) regulated by ER, we analyzed ER response to E2 and EGF by quantifying image-based results. Data show differential recruitment of GFP-ER to the array, with the AF1 domain playing a vital role in EGF-mediated responsiveness. Temporal analyses of large-scale chromatin dynamics, and accumulation of array-localized reporter mRNA over 24 hours showed that the EGF response consists of a single pulse of reporter mRNA accumulation concomitant with transient increase in array decondensation. Estradiol induced a novel cyclical pattern of mRNA accumulation with a sustained increase in array decondensation. Collectively, our work shows that there is a stimuli-specific pattern of large-scale chromatin modification and transcript levels by ER

    PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas

    Get PDF
    We have used a novel variant of the human oestrogen receptor (ER)-positive MCF-7 cell line, TMX2-28, as a model to study breast cancer. TMX2-28 cells show no detectable levels of mRNA or protein expression for the ER and express basal cytokeratins (CKs) 5, 14, and 17. cDNA microarray comparison between TMX2-28 and its parent cell line, MCF-7, identified 1402 differentially expressed transcripts, one of which was, phospholipase D1 (PLD1). Using real-time RT–PCR, we confirmed that PLD1 mRNA levels are 10-fold higher in TMX2-28 cells than in MCF-7 cells. We next examined PLD1 expression in human breast carcinomas. Phospholipase D1 mRNA levels were higher in breast tumours that expressed high-mRNA levels of basal CKs 5 and/or 17, but PLD1 mRNA levels were not significantly higher in ER-negative tumours. Phospholipase D1 protein was overexpressed in 10 of 42 (24%) breast tumours examined by IHC. Phospholipase D1 was overexpressed in 6 of 31 ER-positive tumours and 4 of 11 ER-negative tumours. Phospholipase D1 was overexpressed in three of the four tumours that showed high CK5/17 expression. Five PLD1-positive tumours were negative for phospho-Akt expression, but positive for phospho-mammalian target of rapamycin (mTOR) expression. The other five PLD1-positive breast tumours showed positive expression for phospho-Akt; however, only two of these cases were positive for phospho-mTOR. In this study, we report that PLD1 and phospho-mTOR are coexpressed in a subset of phospho-Akt-negative breast carcinomas

    Modularity in Protein Complex and Drug Interactions Reveals New Polypharmacological Properties

    Get PDF
    Recent studies have highlighted the importance of interconnectivity in a large range of molecular and human disease-related systems. Network medicine has emerged as a new paradigm to deal with complex diseases. Connections between protein complexes and key diseases have been suggested for decades. However, it was not until recently that protein complexes were identified and classified in sufficient amounts to carry out a large-scale analysis of the human protein complex system. We here present the first systematic and comprehensive set of relationships between protein complexes and associated drugs and analyzed their topological features. The network structure is characterized by a high modularity, both in the bipartite graph and in its projections, indicating that its topology is highly distinct from a random network and that it contains a rich and heterogeneous internal modular structure. To unravel the relationships between modules of protein complexes, drugs and diseases, we investigated in depth the origins of this modular structure in examples of particular diseases. This analysis unveils new associations between diseases and protein complexes and highlights the potential role of polypharmacological drugs, which target multiple cellular functions to combat complex diseases driven by gain-of-function mutations

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues
    corecore