24,213 research outputs found

    Correcting symmetry imperfections in linear multipole traps

    Get PDF
    Multipole radio-frequency traps are central to collisional experiments in cryogenic environments. They also offer possibilities to generate new type of ion crystals topologies and in particular the potential to create infinite 1D/2D structures: ion rings and ion tubes. However, multipole traps have also been shown to be very sensitive to geometrical misalignment of the trap rods, leading to additional local trapping minima. The present work proposes a method to correct non-ideal potentials, by modifying the applied radio-frequency amplitudes for each trap rod. This approach is discussed for the octupole trap, leading to the restitution of the ideal Mexican-Hat-like pseudo-potential, expected in multipole traps. The goodness of the compensation method is quantified in terms of the choice of the diagnosis area, the residual trapping potential variations, the required adaptation of the applied radio-frequency voltage amplitudes, and the impact on the trapped ion structures. Experimental implementation for macroscopic multipole traps is also discussed, in order to propose a diagnostic method with respect to the resolution and stability of the trap drive. Using the proposed compensation technique, we discuss the feasibility of generating a homogeneous ion ring crystal, which is a measure of quality for the obtained potential well

    Fast accumulation of ions in a dual trap

    Full text link
    Transporting charged particles between different traps has become an important feature in high-precision spectroscopy experiments of different types. In many experiments in atomic and molecular physics, the optical probing of the ions is not carried out at the same location as the creation or state preparation. In our double linear radio-frequency trap, we have implemented a fast protocol allowing to shuttle large ion clouds very efficiently between traps, in times shorter than a millisecond. Moreover, our shuttling protocol is a one-way process, allowing to add ions to an existing cloud without loss of the already trapped sample. This feature makes accumulation possible, resulting in the creation of large ion clouds. Experimental results show, that ion clouds of large size are reached with laser-cooling, however, the described mechanism does not rely on any cooling process

    Parallel ion strings in linear multipole traps

    Full text link
    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off

    Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    Get PDF
    Background: Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results: Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions: Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway

    Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus

    Get PDF
    The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been conflicting reports concerning the number of propriospinal cells and the extent of their axons. In addition, little is known about the neurochemical phenotype of propriospinal neurons or about the termination pattern of their axons. In the present study we show, using retrograde tracing, that around a third of lamina I–II neurons in the lumbar enlargement project at least five segments cranially. Substance P-expressing excitatory neurons are over-represented among these cells, accounting for one-third of the propriospinal neurons. In contrast, inhibitory interneurons and excitatory PKCγ neurons are both under-represented among the retrogradely labelled cells. By combining viral vector-mediated Cre-dependent anterograde tracing with immunocytochemistry, we provide evidence that the lateral spinal nucleus (LSN), rather than the superficial dorsal horn, is the main target for axons belonging to propriospinal substance P-expressing neurons. These findings help to resolve the discrepancies between earlier studies and have implications for the role of the LSN in pain mechanisms

    An ion ring in a linear multipole trap for optical frequency metrology

    Full text link
    A ring crystal of ions trapped in a linear multipole trap is studied as a basis for an optical frequency standard. The equilibrium conditions and cooling possibilities are discussed through an analytical model and molecular dynamics simulations. A configuration which reduces the frequency sensitivity to the fluctuations of the number of trapped ions is proposed. The systematic shifts for the electric quadrupole transition of calcium ions are evaluated for this ring configuration. This study shows that a ring of 10 or 20 ions allows to reach a short term stability better than for a single ion without introducing limiting long term fluctuations
    • …
    corecore