51 research outputs found

    Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    Get PDF
    Semi-solid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semi-solid state. Taking advantage of the thixotropic behavior of alloys in the semi-solid state, significant progress has been made in semi-solid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones

    Microstructure Evolution and Material Flow of Steel in Semi-solid Forming Process

    Get PDF
    The present study aims to identify and characterize the development of microstructure and deformation characteristics of steel grades in semi-solid state which is affected by the change in morphologies of microstructure at high temperature. Thixoextrusion tests with different combinations of forming temperature and forming speed were performed. It was identified that several process parameters, such as initial billet and die temperatures or forming speed, affect thermal exchanges thereby influencing the microstructure evolution and material flow. Furthermore, 2D and 3D microstructure characterization was performed on the same sample which was partial remelted and quenched. Reconstructed 3D images were compared with the ones obtained with a Scanning Electron Microscope and an Energy Dispersive Spectrometry system. The good agreement between 2D SEM observations and 3D X-ray microtomography results makes these two techniques efficient to characterize steels in the semi-solid state

    Determination of quantity and localization of liquid in the semi-solid state using both 3D X-ray microtomography and 2D techniques for steel thixoforming

    Get PDF
    The distribution of liquid at the semi solid state is one of the most important parameters for steel thixoforging. It has a great influence on the viscosity of the material, on the flows and finally on the final shape and mechanical properties of the thixoforged parts. Both ex situ and in situ 3D X-ray microtomography characterizations have been carried out to determine the quantity and localization of liquid at high temperature of M2 steel slugs. Microtomography was first performed ex situ at room temperature on samples heated and quenched from semi-solid state. The specimens were also scanned in situ directly at high temperature. The obtained results have been compared to 2D observations using EDS technique in SEM on heated and quenched specimens. They showed a good correlation making both approaches very efficient for the study of the liquid zones at the semi-solid state

    Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    Get PDF
    Semi-solid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semi-solid state. Taking advantage of the thixotropic behavior of alloys in the semi-solid state, significant progress has been made in semi-solid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones

    Effets des échanges thermiques sur l'écoulement de l'alliage semi-solide mis en forme par thixoextrusion

    Get PDF
    Le comportement d’un alliage mis en forme à l’état semi-solide n’est toujours pas bien compris. Afin d’établir l'influence de différents paramètres sur l'écoulement de la matière, un processus de thixoextrusion expérimental a été réalisé sur un acier. Les effets de la température initiale du lopin et de l’outillage, de la vitesse de mise en forme et de la présence d'une couche de Ceraspray® à l'interface de l'outil et du lopin ont été étudiés par des expériences et confrontés à la simulation.Semi-solid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semi-solid state. Taking advantage of the thixotropic behavior of alloys in the semi-solid state, significant progress has been made in semi-solid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones

    Caractérisation des propriétés d'emploi des aciers thixoforgés (vers la maîtrise du processus de fabrication)

    Get PDF
    Le thixoforgeage est un procédé de mise en forme innovant permettant l'élaborationde pièces complexes à l'état semi-solide. Il nécessite moins d'opérations et des efforts plusfaibles que les autres procédés de mise en forme plus classiques. L'objectif de ce travail et decaractériser la microstructure de plusieurs nuances d'acier à chaque étape du procédé afin demieux comprendre l'influence des différents paramètres et mécanismes de déformation, car lamicrostructure à l'état semi-solide, et en particulier la fraction de liquide, est très importante.Plusieurs techniques 2D et 3D (analyses MEB-EDS, CSLM, microtomographie X) ont étéutilisées pour évaluer la fraction de liquide des aciers étudiés (M2, C38LTT et 100Cr6). Lesrésultats obtenus pour l'acier M2 montrent une bonne corrélation entre les observations 2DMEB-EDS et les analyses 3D en microtomographie après trempe, ce qui indique que ces deuxtechniques sont très efficaces pour caractériser l'état semi-solide des aciers fortement alliés. Lemicroscope CSLM est utilisé quant à lui pour observer directement l'état semi-solide à hautetempérature : apparition du liquide, processus de solidification etc. Des essais de thixoforgeageont ensuite été réalisés pour étudier l'influence des différents paramètres du procédé sur lamicrostructure, la géométrie finale des pièces, les écoulements de matière etc. Après avoiranalysé la microstructure des pièces thixoforgées, des mécanismes permettant d'expliquer lesécoulements de matière sont proposés. Qui plus est, la comparaison avec la simulation duprocédé de forgeage à chaud montre que ces écoulements sont très différents, ce qui est dû aucomportement du matériau. Ce dernier est très sensible aux paramètres du procédé : il estdonc nécessaire de bien maîtriser et contrôler toutes les étapes lors de la mise en forme.The thixoforging process is an innovative forming process for the manufacturing ofcomplex parts in the semi-solid state, in fewer forming steps and with a decreased formingforce. The objective of this work is to characterize the microstructure of different steel grades ateach step of the thixoforging process in order to better understand the influence of the processparameters and the mechanisms of deformation, as the microstructure of the material in thesemi-solid state, especially the volume fraction of liquid, is very important. Several 2D and 3Dtechniques (SEM-EDS analyses, CSLM, X-ray microtomography) have been used to evaluatethe liquid fraction of various steel grades (M2, C38LTT and 100Cr6). The results for M2 steelshow a good agreement between 2D SEM - EDS observations and 3D X-ray microtomographyafter quenching, which proves that both techniques are efficient in characterizing high-alloyedsteels in the semi-solid state. The CSLM technique is used to observe the microstructuredirectly at high temperature, with the apparition of liquid and the solidification. Thixoforgingexperiments are finally performed in order to study the influence of the process parameters onthe microstructure: the final part geometry, the material flow etc. After analyzing themicrostructure of the thixoforged parts, some mechanisms of material flow are proposed.Moreover, by comparing the results between the thixoforging experiments and the hot forgingsimulations, it is found that the material flow is very different from that of hot forging process,which results from the material behavior. The latter is very sensitive to the process parameters;an accurate process control is necessary.PARIS-Arts et Métiers (751132303) / SudocSudocFranceF

    Application of X-ray Microtomography to Quantify the Liquid Fraction of M2 Steel for Semi-solid Forming process

    Get PDF
    Thixoforging, one variant of semi-solid metal processing in which the metallic alloys are processed at low liquid fraction (0.1< Fl < 0.3), is used to produce complex parts with high mechanical properties. Steel thixoforging faces more challenges as compared to that of low melting point materials due to high processing temperature and lack of understanding of the thermomechanical behavior of materials in the given conditions. It is crucial to study the microstructure in the semi-solid state to improve the understanding of the thixoforging process since the material behavior strongly depends on main parameters: the liquid fraction, its distribution as well as the coherence of the solid skeleton. The microstructure has a great influence on the viscosity of the material, on the flows and finally on the final shape and mechanical properties of the thixoforged parts. Here, the characterization of the volume fraction and distribution of liquid in the semi-solid state with high energy 3D X-ray microtomography is investigated on M2 steel grade as a ‘model’ alloy. The obtained results are compared to 2D observations using EDS technique in SEM on heated and quenched specimens. They show a good correlation making both approaches very efficient for the study of the liquid zones in the semi-solid state

    Deformation behavior and microstructure evolution of steel during the entire thixoforging process for improving the process controlling

    Get PDF
    After analazing,the microstructure of the thixoforged parts, some mechanisms of material flow are proposed

    Effects of Process Parameters on Microstructure and Mechanical Properties of Semi-Solid Al-7Si-0.5Mg Aluminum Alloy by Gas Induced Semi-Solid Process

    Get PDF
    Al-7Si-0.5Mg aluminum alloy semi-solid slurry with good spherical grains was prepared by gas induced semi-solid process (GISS) and the effects of both holding time and medium alloy addition on the microstructure of the semi-solid slurry were investigated. These two parameters have a great influence on the solid fraction, the size and the sphericity of the grains. With holding time increased from 85 s to 270 s, the solid phase fraction of the semi-solid slurry decreased from ~0.77 to ~0.67, the average grain size increased from ~95 μm to ~225 μm and the average shape factor decreased from ~0.80 to ~0.33. When medium alloy addition varied in the range of 0.5–2.0 wt%, a better slurry microstructure was obtained at about 1.5 wt%. Compared with the conventional liquid die-casting, the semi-solid die-casting improved the mechanical properties of tensile bars; yield strength, tensile strength and elongation of tensile bars reached ~240 MPa, ~307 MPa and ~8.8% after heat treatment, respectively. In conclusion, GISS process can prepare the semi-solid slurry with uniform and round microstructure, and the semi-solid die-casting can improve mechanical proper ties of Al-7Si-0.5Mg aluminum alloy

    Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade

    Get PDF
    The microstructure investigation and flow behavior during thixoforging of M2 steel parts were investigated. Partial remelting was performed at processing temperatures ranging from 1290 ◦C to 1340 ◦C corresponding to a liquid fraction range between 10% and 30% (according to differential scanning calorimetry measurements and quantitative image analyses). A conventional microstructure for thixoforming process was obtained: spherical solid grains surrounded by liquid phase. The microstructure across the heated billets was relatively homogeneous with bigger grain size near the surface. Successful thixoextrusion for producing parts was finally achieved at processing temperatures. By investigating the microstructure and load-displacement curves, different mechanisms in various forming stages were proposed
    corecore