275 research outputs found

    Cluster phases of membrane proteins

    Full text link
    A physical scenario accounting for the existence of size-limited submicrometric domains in cell membranes is proposed. It is based on the numerical investigation of the counterpart, in lipidic membranes where proteins are diffusing, of the recently discovered cluster phases in colloidal suspensions. I demonstrate that the interactions between proteins, namely short-range attraction and longer-range repulsion, make possible the existence of stable small clusters. The consequences are explored in terms of membrane organization and diffusion properties. The connection with lipid rafts is discussed and the apparent protein diffusion coefficient as a function of their concentration is analyzed.Comment: 5 pages - enhanced versio

    Thermodynamics of nano-cluster phases: a unifying theory

    Full text link
    We propose a unifying, analytical theory accounting for the self-organization of colloidal systems in nano- or micro-cluster phases. We predict the distribution of cluter sizes with respect to interaction parameters and colloid concentration. In particular, we anticipate a proportionality regime where the mean cluster size grows proportionally to the concentration, as observed in several experiments. We emphasize the interest of a predictive theory in soft matter, nano-technologies and biophysics.Comment: 4 pages, 1 figur

    Effects of thiosulfonates on the lipid composition of rat tissues

    Full text link

    Planar lamellae and onions: a spatially resolved rheo-NMR approach to the shear-induced structural transformations in a surfactant model system

    Get PDF
    The shear-induced transformations between oriented planar lamellae and a state of closely packed multilamellar vesicles (MLVs) in a lyotropic nonionic surfactant model system were studied by the combination of nuclear magnetic resonance (NMR) spectroscopy and diffusometry with magnetic resonance imaging (MRI). (2)H NMR imaging confirmed the discontinuous nature of the transition from onions to planar lamellae, revealing the spatial coexistence of both states within the gap of the cylindrical Couette geometry. On the other hand, NMR diffusion measurements in three principal directions and at various values of strain strongly suggest that a multi-lamellar cylindrical or undulated intermediate structure exists during the continuous and spatially homogeneous transition from planar lamellae to MLVs

    STRUCTURE DES PHASES PRÉSENTES DANS LES SYSTÈMES LIPIDE-EAU

    No full text
    L'Ă©tude par diffraction des rayons X de nombreux systĂšmes lipide-eau a mis en Ă©vidence un grand nombre de phases, dont la structure a pu ĂȘtre Ă©tablie. Le domaine d'existence de ces phases dĂ©pend de la nature du lipide (dont le choix s'Ă©tend de composĂ©s chimiques purs, tels les savons saturĂ©s, jusqu'aux mĂ©langes trĂšs hĂ©tĂ©rogĂšnes extraits d'organites cellulaires), de la teneur en eau et de la tempĂ©rature. On peut examiner diffĂ©rents aspects de la structure de ces phases : a) Conformation Ă  courte Ă©chelle. Les chaĂźnes paraffiniques peuvent adopter diffĂ©rentes conformations : totalement ordonnĂ©e, comme dans les cristaux de savon ; trĂšs dĂ©sordonnĂ©e, analogue Ă  celle du caoutchouc partiellement Ă©tirĂ© ; partiellement ordonnĂ©e, avec les chaĂźnes soit Ă©tirĂ©es soit enroulĂ©es en hĂ©lice, organisĂ©es selon des rĂ©seaux Ă  deux dimensions avec dĂ©sordre rotationnel. b) Organisation Ă  grande Ă©chelle. L'organisation peut ĂȘtre pĂ©riodique Ă  zĂ©ro, une, deux ou trois dimensions. Le premier cas correspond Ă  l'Ă©tat liquide ; le second aux stases smectiques, Ă  structure lamellaire ; le quatriĂšme Ă  l'Ă©tat cristallin. Le troisiĂšme cas (pĂ©riodique Ă  deux dimensions) satisfait la dĂ©finition de Friedel d'organisation mĂ©somorphe, mais prĂ©sente un degrĂ© d'ordre plus Ă©levĂ© que celui des stases smectique et nĂ©matique. c) Forme des Ă©lĂ©ments de structure. Les Ă©lĂ©ments de structure, c'est-Ă -dire les rĂ©gions occupĂ©es respectivement par les parties paraffiniques et par les parties polaires, adoptent des formes djffĂ©rentes, qui peuvent ĂȘtre groupĂ©es en trois classes : 1° Lamelles, qui consistent soit de couches planes indĂ©finies, soit de rubans de largeur finie et de longueur infinie, soit de disques de taille finie. 2° BĂątonnets, soit tiges rigides de longueur infinie, soit bĂątonnets de longueur finie, tous identiques, joints trois Ă  trois ou quatre Ă  quatre et formant des filets Ă  deux ou trois dimensions. 3° SphĂšres. d) Distribution des rĂ©gions polaires et parafiniques. Dans tous les cas oĂč la structure se prĂȘte Ă  une distinction topologique entre rĂ©gions "intĂ©rieure" et "extĂ©rieure" deux types de distributions peuvent exister, selon que les parties paraffiniques occupent les rĂ©gions "intĂ©rieures" et les parties polaires les rĂ©gions "extĂ©rieures", ou vice-versa. Les deux types de distributions sont observĂ©s couramment. L'ensemble des donnĂ©es expĂ©rimentales se prĂȘte Ă  des considĂ©rations d'ordre chimique, si on envisage la corrĂ©lation entre la structure des phases et la nature chimique des lipides, d'ordre cristallographique, si on examine le rĂŽle des Ă©lĂ©ments de symĂ©trie et l'aspect " cristaux-liquides " de ces structures, et d'ordre thermodynamique, si on s'intĂ©resse Ă  la nature des forces responsables de la stabilitĂ© des diffĂ©rentes structures et du polymorphisme.X-ray scattering data on lipid water systems display a number of phases ; the structure of these phases has been established. The phase diagram depends on the nature of the lipid (pure chemical compounds such as the soaps, or heterogeneous mixtures extracted from cellular organites), on the water content and on temperature. The following features are reviewed : a) small scale conformation of the paraffine chains : this may be completely ordered (e. g. pure soap crystals), completely disordered (rubber like), or partially ordered (stretched chains or helical chains in a two-dimensional organisation with rotational disorder) ; b) large scale organization : this corresponds to periodicity in zero, one, two, or three dimensions. The first case is found with liquids, the-second with lamellar phases (smectics), the fourth with crystals. The third case (periodicity in 2 dimensions) is mesomorphic in the Friedel sense, but is more highly ordered than smectics or nematics. c) shape of the structural units, i. e. of the paraffinic and polar regions. One finds three classes : 1) lamellae (indefinite plane layers), ribbons (of indefinite length), discs ; 2) rods of infinite length, or jointed rods associated in two-dimensional (or three-dimensional) networks ; 3) spheres ; d) distribution of the polar and paraffinic regions. In some phases the topology allows for an "inside" region, and an "outside" region. This may occur either as "oil in water" or as "water in oil". These data are discussed from three points of view : 1) chemistry (correlation between phase diagram and chemical composition) ; 2) crystallography (symmetries and relations with liquid crystals) ; 3) thermodynamics (nature of the forces stabilizing the various structures)
    • 

    corecore