589 research outputs found

    MAPPA. Methodologies applied to archaeological potential Predictivity

    Get PDF
    The fruitful cooperation over the years between the university teaching staff of Univerità di Pisa (Pisa University), the officials of the Soprintendenza per i Beni Archeologici della Toscana (Superintendency for Archaeological Heritage of Tuscany), the officials of the Soprintendenza per i Beni Architettonici, Paesaggistici, Artistici ed Etnoantropologici per le Province di Pisa e Livorno (Superintendency for Architectural, Landscape and Ethno-anthropological Heritage for the Provinces of Pisa and Livorno), and the Comune di Pisa (Municipality of Pisa) has favoured a great deal of research on issues regarding archaeological heritage and the reconstruction of the environmental and landscape context in which Pisa has evolved throughout the centuries of its history. The desire to merge this remarkable know-how into an organic framework and, above all, to make it easily accessible, not only to the scientific community and professional categories involved, but to everyone, together with the wish to provide Pisa with a Map of archaeological potential (the research, protection and urban planning tool capable of converging the heritage protection needs of the remains of the past with the development requirements of the future) led to the development of the MAPPA project – Methodologies applied to archaeological potential predictivity - funded by Regione Toscana in 2010. The two-year project started on 1 July 2011 and will end on 30 June 2013. The first year of research was dedicated to achieving the first objective, that is, to retrieving the results of archaeological investigations from the archives of Superintendencies and University and from the pages of scientific publications, and to making them easily accessible; these results have often never been published or have often been published incompletely and very slowly. For this reason, a webGIS (“MappaGIS” that may freely accessed at http://mappaproject.arch.unipi.it/?page_id=452) was created and will be followed by a MOD (Mappa Open Data archaeological archive), the first Italian archive of open archaeological data, in line with European directives regarding access to Public Administration data and recently implemented by the Italian government also (the beta version of the archive can be viewed at http://mappaproject.arch.unipi.it/?page_id=454). Details are given in this first volume about the operational decisions that led to the creation of the webGIS: the software used, the system architecture, the organisation of information and its structuring into various information layers. But not only. The creation of the webGIS also gave us the opportunity to focus on a series of considerations alongside the work carried out by the MAPPA Laboratory researchers. We took the decision to publish these considerations with a view to promoting debate within the scientific community and, more in general, within the professional categories involved (e.g. public administrators, university researchers, archaeology professionals). This allowed us to overcome the critical aspects that emerged, such as the need to update the archaeological excavation documentation and data archiving systems in order to adjust them to the new standards provided by IT development; most of all, the need for greater and more rapid spreading of information, without which research cannot truly progress. Indeed, it is by comparing and connecting new data in every possible and, at times, unexpected way that research can truly thrive

    Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions

    Get PDF
    Organometallic allylic reagents are widely used in the construction of C−C bonds by Barbier-type reactions. In this communication, we have described a photoredox Barbier allylation of aldehydes mediated by bismuth, in absence of other metals as co-reductants. Mild reaction conditions, tolerance of oxygen, and use of aqueous solvent make this photoredox methodology attractive for green and sustainable synthesis of homoallylic alcohols

    Deterministic and stochastic chaos characterize laboratory earthquakes

    Get PDF
    We analyze frictional motion for a laboratory fault as it passes through the stability transition from stable sliding to unstable motion. We study frictional stick-slip events, which are the lab equivalent of earthquakes, via dynamical system tools in order to retrieve information on the underlying dynamics and to assess whether there are dynamical changes associated with the transition from stable to unstable motion. We find that the seismic cycle exhibits characteristics of a low-dimensional system with average dimension similar to that of natural slow earthquakes (<5). We also investigate local properties of the attractor and find maximum instantaneous dimension ≳10, indicating that some regions of the phase space require a high number of degrees of freedom (dofs). Our analysis does not preclude deterministic chaos, but the lab seismic cycle is best explained by a random attractor based on rate- and state-dependent friction whose dynamics is stochastically perturbed. We find that minimal variations of 0.05% of the shear and normal stresses applied to the experimental fault influence the large-scale dynamics and the recurrence time of labquakes. While complicated motion including period doubling is observed near the stability transition, even in the fully unstable regime we do not observe truly periodic behavior. Friction's nonlinear nature amplifies small scale perturbations, reducing the predictability of the otherwise periodic macroscopic dynamics. As applied to tectonic faults, our results imply that even small stress field fluctuations (≲150 kPa) can induce coefficient of variations in earthquake repeat time of a few percent. Moreover, these perturbations can drive an otherwise fast-slipping fault, close to the critical stability condition, into a mixed behavior involving slow and fast ruptures

    Organocatalytic Stereoselective α-Formylation of Ketones

    Get PDF
    We have described the first organocatalytic stereoselective formylation of ketones accomplished by the use of N-methybenzothiazolylium iodide. The benzothiazolium salt, generally used as a masked formyl group or as precursor of carbenes,[31] is quite electrophilic and react with enamines formed in situ. Both moderate yield and high stereoselectivity were obtained with different ketones

    PEG reimplantation after Buried Bumper Syndrome: a case report

    Get PDF
    Percutaneous endoscopic gastrostomy (PEG) is the method of choice to provide long-term enteral nutrition for patients with impossibility to be fed orally. Although it is considered a routine and safe procedure, potential complications exist, which are generally classified into three major categories: endoscopic technical difficulties, PEG procedure-related complications and late complications associated with PEG tube use, such as buried bumper syndrome (BBS). BBS is a potentially life-threatening complication, occurring in 0.3% to 2.5% of cases. Additional complications related to BBS may present, such as wound infection, peritonitis, and necrotizing fasciitis. Once resolved the acute complication, an adequate feeding method should be prompted for the patient, among whom PEG remains of choice. After tissue inflammation, fibrosis may prevent a standard endoscopic procedure for the new implantation, therefore endoscopists should modulate procedures to obtain successful and safe results. A combined surgical-and endoscopic strategy could resolve implantation difficulties ensuring a safe and simple procedure. We present here a case of BBS complicated with abdominal wall cellulitis in a paraplegic 35-year-old-man who was admitted to our hospital. (www.actabiomedica.it)

    Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle

    Get PDF
    Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic

    A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes

    Get PDF
    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95 % ee at 25 °C), and high productivity (more than 3800 h−1) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products

    Cp2TiCl2-Catalyzed Photoredox Allylation of Aldehydes with Visible Light

    Get PDF
    A Barbier-type Cp2TiCl2-mediated (10 mol %) photoredox allylation of aldehydes under irradiation with visible light (blue light-emitting diodes (LEDs), 450 nm) and in the presence of an organic dye (3DPAFIPN, 5 mol %) with allylbromides is described

    Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells.

    Get PDF
    Abstract Two-dimensional vs three-dimensional culture conditions, such as the presence of extracellular matrix components, could deeply influence the cell fate and properties. In this paper we investigated proliferation, differentiation, survival, apoptosis, growth and neurotrophic factor synthesis of rat embryonic stem cells (RESCs) cultured in 2D and 3D conditions generated using Cultrex® Basement Membrane Extract (BME) and in poly-( l -lactic acid) (PLLA) electrospun sub-micrometric fibres. It is demonstrated that, in the absence of other instructive stimuli, growth, differentiation and paracrine activity of RESCs are directly affected by the different microenvironment provided by the scaffold. In particular, RESCs grown on an electrospun PLLA scaffolds coated or not with BME have a higher proliferation rate, higher production of bioactive nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) compared to standard 2D conditions, lasting for at least 2 weeks. Due to the high mechanical flexibility of PLLA electrospun scaffolds, the PLLA/stem cell culture system offers an interesting potential for implantable neural repair devices
    corecore