1,729 research outputs found

    Universal first-passage statistics of aging processes

    Full text link
    Many out of equilibrium phenomena, such as diffusion-limited reactions or target search processes, are controlled by first-passage events. So far the general determination of the mean first-passage time (FPT) to a target in confinement has left aside aging processes, involved in contexts as varied as glassy dynamics, tracer diffusion in biological membranes or transport of cold atoms in optical lattices. Here we consider general non-Markovian scale-invariant processes in arbitrary dimension, displaying aging, and demonstrate that all the moments of the FPT obey universal scalings with the confining volume with non trivial exponents. Our analysis shows that a nonlinear scaling of the mean FPT with the volume is the hallmark of aging and provides a general tool to quantify its impact on first-passage kinetics in confinement

    Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage

    Get PDF
    We propose a robust scheme to generate single-photon Fock states and atom-photon and atom-atom entanglement in atom-cavity systems. We also present a scheme for quantum networking between two cavity nodes using an atomic channel. The mechanism is based on Stark-chirped rapid adiabatic passage (SCRAP) and half-SCRAP processes in a microwave cavity. The engineering of these states depends on the design of the adiabatic dynamics through the static and dynamic Stark shifts.Comment: 7 pages, 8 figures, to be appeared in PL

    Fast SWAP gate by adiabatic passage

    Full text link
    We present a process for the construction of a SWAP gate which does not require a composition of elementary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided.Comment: 5 pages, 4 figures, submitted to Phys. Re

    Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies

    Get PDF
    Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied. We use a system of two coupled spin-1/2 that can be translated into a three-state ladder model whose intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the model.Comment: 10 pages, 9 figure

    On the topology of adiabatic passage

    Full text link
    We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level which will be populated in STIRAP process in Lambda or V systems by the choice of the peak amplitudes or the pulse sequence

    Adiabatic tracking for photo- and magneto-association of Bose-Einstein condensates with Kerr nonlinearities

    Full text link
    We develop the method of adiabatic tracking for photo- and magneto-association of Bose-Einstein atomic condensates with models that include Kerr type nonlinearities. We show that the inclusion of these terms can produce qualitatively important modifications in the adiabatic dynamics, like the appearance of bifurcations, in which the trajectory that is being tracked loses its stability. As a consequence the adiabatic theorem does not apply and the adiabatic transfer can be strongly degraded. This degradation can be compensated by using fields that are strong enough compared with the values of the Kerr terms. The main result is that, despite these potentially detrimental features, there is always a choice of the detuning that leads to an efficient adiabatic tracking, even for relatively weak fields

    Bayesian method approach for fatigue life distribution estimation of rubber components

    Get PDF
    The constantly increasing market requirements of high-quality vehicles compel automotive manufacturers to perform lifetime testing to verify the reliability levels of new products. A common problem is that only a small number of samples of a system\u27s component can be tested. In automotive applications, mechanical components subjected to cyclic loading have to be designed against fatigue. In this paper, the Bayesian estimation of lognormal distribution parameters (usually used to define the fatigue lifetime of rubber components) is studied to improve the accuracy of estimation while incorporating the available knowledge on the product. In particular, the finite element results and experts\u27 opinions are considered prior knowledge. For lifetime prediction by Finite Element Method (FEM), a model based on the Brown-Miller law was developed for the rubberlike boot seal material
    • …
    corecore