6 research outputs found

    Forces exerted during exercises by patients with adolescent idiopathic scoliosis wearing fiberglass braces

    Get PDF
    OBJECTIVE: To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. SETTING: Outpatient care. PATIENTS: 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. INTERVENTIONS: Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours). MAIN OUTCOME MEASURE: Pressure detected by the F-Socket System between the rib hump and the pad of the brace. RESULTS: In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure. CONCLUSION: Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked

    Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model

    No full text
    The biomechanical influence of thoraco-lumbo-sacral bracing, a commonly employed treatment in scoliosis, is still not fully understood. The aim of this study was to compare the immediate corrections generated by different virtual braces using a patient-specific finite element model (FEM) and to analyze the most influential design factors. The 3D geometry of three patients presenting different types of curves was acquired with a multi-view X-ray technique and surface topography. A personalized FEM of the patients’ trunk and a parametric model of a virtual custom-fit brace were then created. The installation of the braces on the patients was simulated. The influence of 15 design factors on the 3D correction generated by the brace was evaluated following a design of experiments simulation protocol allowing computing the main and two-way interaction effects of the design factors. A total of 12,288 different braces were tested. Results showed a great variability of the braces effectiveness. Of the 15 design factors investigated, according to the 2 modalities chosen for each one, the 5 most influential design factors were the position of the brace opening (posterior vs. anterior), the strap tension, the trochanter extension side, the lordosis design and the rigid shell shape. The position of the brace opening modified the correction mechanism. The trochanter extension position influenced the efficiency of the thoracic and lumbar pads by modifying their lever arm. Increasing the strap tension improved corrections of coronal curves. The lordosis design had an influence in the sagittal plane but not in the coronal plane. This study could help to better understand the brace biomechanics and to rationalize and optimize their design
    corecore