61 research outputs found
Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques
Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy
A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus
Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors
Late cardiac events after childhood cancer: Methodological aspects of the pan-european study pancaresurfup
Background and Aim Childhood cancer survivors are at high risk of long-Termadverse effects of cancer and its treatment, including cardiac events. The pan-European PanCareSurFup study determined the incidence and risk factors for cardiac events among childhood cancer survivors. The aim of this article is to describe the methodology of the cardiac cohort and nested case-control study within PanCareSurFup. Methods Eight data providers in Europe participating in PanCareSurFup identified and validated symptomatic cardiac events in their cohorts of childhood cancer survivors. Data onsymptomatic heart failure, ischemia, pericarditis, valvular disease and arrhythmia were collected and graded according to the Criteria for Adverse Events. Detailed treatment data, data on potential confounders, lifestyle related risk factors and general health problems were collected. Results The PanCareSurFup cardiac cohort consisted of 59,915 5-year childhood cancer survivors with malignancies diagnosed between 1940 and 2009 and classified according to the International Classification of Childhood Cancer 3. Different strategies were used to identify cardiac events such as record linkage to population/ hospital or regional based databases, and patient-And general practitioner-based questionnaires. Conclusion The cardiac study of the European collaborative research project PanCareSurFup will provide the largest cohort of 5-year childhood cancer survivors with systematically ascertained and validated data on symptomatic cardiac events. The result of this study can provide information to minimize the burden of cardiac events in childhood cancer survivors by tailoring the follow-up of childhood cancer survivors at high risk of cardiac adverse events, transferring this knowledge into evidence-based clinical practice guidelines and providing a platformfor future research studies in childhood cancer patients. © 2016 Feijen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Epigenetic Signatures of Cigarette Smoking
BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders.
METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs.
CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.Biotechnology and Biological Sciences Research Council, British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society, Wellcome Trus
Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L.
Genetic variation of bud burst and early growth components was estimated in a full-sib family of Quercus robur L. comprising 278 offspring. The full sibs were vegetatively propagated, and phenotypic assessments were made in three field tests. This two-generation pedigree was also used to construct a genetic linkage map (12 linkage groups, 128 markers) and locate quantitative trait loci (QTLs) controlling bud burst and growth components. In each field test, the date of bud burst extended over a period of 20 days from the earliest to the latest clone. Bud burst exhibited higher heritability (0.15–0.51) than growth components (0.04–0.23) and also higher correlations across field tests. Over the three tests there were 32 independent detected QTLs (Ple5% at the chromosome level) controlling bud burst, which likely represent at least 12 unique genes or chromosomal regions controlling this trait. QTLs explained from 3% to 11% of the variance of the clonal means. The number of QTLs controlling height growth components was lower and varied between two and four. However the contribution of each QTL to the variance of the clonal mean was higher (from 4% to 19%). These results indicate that the genetic architecture of two important fitness-related traits are quite different. On the one hand, bud burst is controlled by several QTLs with rather low to moderate effects, but contributing to a high genetic (additive) variance. On the other hand, height growth depends on fewer QTLs with moderate to strong effects, resulting in lower heritabilities of the trai
- …