87 research outputs found

    Human oral isolate Lactobacillus fermentum AGR1487 induces a proinflammatory response in germ-free rat colons

    Get PDF
    Lactobacilli are thought to be beneficial for human health, with lactobacilli-associated infections being confined to immune-compromised individuals. However, Lactobacillus fermentum AGR1487 negatively affects barrier integrity in vitro so we hypothesized that it caused a pro-inflammatory response in the host. We compared germ-free rats inoculated with AGR1487 to those inoculated with another L. fermentum strain, AGR1485, which does not affect in vitro barrier integrity. We showed that rats inoculated with AGR1487 had more inflammatory cells in their colon, higher levels of inflammatory biomarkers, and increased colonic gene expression of pro-inflammatory pathways. In addition, our in vitro studies showed that AGR1487 had a greater capacity to activate TLR signaling and induce pro-inflammatory cytokines in immune cells. This study indicates the potential of strains of the same species to differentially elicit inflammatory responses in the host and highlights the importance of strain characterization in probiotic approaches to treat inflammatory disorders

    Persistent Oxytetracycline Exposure Induces an Inflammatory Process That Improves Regenerative Capacity in Zebrafish Larvae

    Get PDF
    BACKGROUND: The excessive use of antibiotics in aquaculture can adversely affect not only the environment, but also fish themselves. In this regard, there is evidence that some antibiotics can activate the immune system and reduce their effectiveness. None of those studies consider in detail the adverse inflammatory effect that the antibiotic remaining in the water may cause to the fish. In this work, we use the zebrafish to analyze quantitatively the effects of persistent exposure to oxytetracycline, the most common antibiotic used in fish farming. METHODOLOGY: We developed a quantitative assay in which we exposed zebrafish larvae to oxytetracycline for a period of 24 to 96 hrs. In order to determinate if the exposure causes any inflammation reaction, we evaluated neutrophils infiltration and quantified their total number analyzing the Tg(mpx:GFP)(i114) transgenic line by fluorescence stereoscope, microscope and flow cytometry respectively. On the other hand, we characterized the process at a molecular level by analyzing several immune markers (il-1β, il-10, lysC, mpx, cyp1a) at different time points by qPCR. Finally, we evaluated the influence of the inflammation triggered by oxytetracycline on the regeneration capacity in the lateral line. CONCLUSIONS: Our results suggest that after 48 hours of exposure, the oxytetracycline triggered a widespread inflammation process that persisted until 96 hours of exposure. Interestingly, larvae that developed an inflammation process showed an improved regeneration capacity in the mechanosensory system lateral line

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    A multicentre randomised controlled trial evaluating lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea in older people admitted to hospital: the PLACIDE study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibiotic associated diarrhoea complicates 5–39% of courses of antibiotic treatment. Major risk factors are increased age and admission to hospital. Of particular importance is <it>C. difficile</it> associated diarrhoea which occurs in about 4% of antibiotic courses and may result in severe illness, death and high healthcare costs. The emergence of the more virulent 027 strain of <it>C. difficile</it> has further heightened concerns. Probiotics may prevent antibiotic associated diarrhoea by several mechanisms including colonization resistance through maintaining a healthy gut flora.</p> <p>Methods</p> <p>This study aims to test the hypothesis that administration of a probiotic comprising two strains of lactobacilli and two strains of bifidobacteria alongside antibiotic treatment prevents antibiotic associated diarrhoea. We have designed a prospective, parallel group trial where people aged 65 years or more admitted to hospital and receiving one or more antibiotics are randomly allocated to receive either one capsule of the probiotic or a matching placebo daily for 21 days. The primary outcomes are the frequency of antibiotic associated and <it>C. difficile</it> diarrhoea during 8–12 weeks follow-up. To directly inform routine clinical practice, we will recruit a sufficient number of patients to demonstrate a 50% reduction in the frequency of <it>C. difficile</it> diarrhoea with a power of 80%. To maximize the generalizability of our findings and in view of the well-established safety record of probiotics, we will recruit a broad range of medical and surgical in-patients from two different health regions within the UK.</p> <p>Discussion</p> <p>Antibiotic associated diarrhoea constitutes a significant health burden. In particular, current measures to prevent and control <it>C. difficile</it> diarrhoea are expensive and disrupt clinical care. This trial may have considerable significance for the prevention of antibiotic associated diarrhoea in hospitals.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number Register ISRCTN70017204.</p

    Loss of runx1

    No full text

    Trauma: the role of the innate immune system

    Get PDF
    <p>Abstract</p> <p>Immune dysfunction can provoke (multiple) organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis). The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status) and extrinsic components (type of injury or "traumaload" and surgery or "intervention load"). Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.</p
    • …
    corecore