7 research outputs found

    Foliar water uptake: a common water acquisition strategy for plants of the redwood forest

    Get PDF
    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2–11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials

    Mode of action of plant-derived natural insecticides

    No full text
    Most of the chemical insecticides are neurotoxic, acting on targets in the central nervous system such as the membrane ion channels (DDT, pyrethroids), the enzyme acetylcholinesterase (organophosphate, carbamate), and the receptors of neurotransmitters (avermectins, neonicotinoids). The recently introduced diamide group of insecticides target the novel ryanodine receptor in the nervous system. Since pests continue to evolve resistance to compounds currently in use, new compounds with new modes of action are needed. Natural products could be a promising source for novel pest control agents. The origin of many of the important insecticide classes is traceable to a natural source as in the case of pyrethroids, avermectins, spinosads, and neonicotinoids. Although insect control agents acting on targets other than the nervous system such as insect growth regulators (e.g., azadirachtin, JH analogues, ecdysone antagonists) have been developed, due to their lack of contact toxicity, they are not quite successful, but find a place in the integrated pest management. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. Decalesides, recently discovered natural insecticides, represent a new class of plant-derived insecticides targeting the tarsal gustatory receptors. In this chapter, we focus on the toxicity and mode of action of natural insecticides

    The Effects of Prenatal Alcohol Exposure on Behavior: Rodent and Primate Studies

    No full text

    Treatment of Special Groups: Children, Pregnant, Elderly, and Mentally Disabled

    No full text

    Neonatal Adaptation Issues After Maternal Exposure to Prescription Drugs: Withdrawal Syndromes and Residual Pharmacological Effects

    No full text
    corecore