290 research outputs found

    Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/K. S. is funded by an EPSRC PhD studentship. S.T. is funded by an EU Marie Curie Intra European Fellowship (GENOMICDIFF)

    QCD corrections to J/ψJ/\psi plus Z0Z^0-boson production at the LHC

    Full text link
    The J/ψ+Z0J/\psi+Z^0 associated production at the LHC is an important process in investigating the color-octet mechanism of non-relativistic QCD in describing the processes involving heavy quarkonium. We calculate the next-to-leading order (NLO) QCD corrections to the J/ψ+Z0J/\psi +Z^0 associated production at the LHC within the factorization formalism of nonrelativistic QCD, and provide the theoretical predictions for the distribution of the J/ψJ/\psi transverse momentum. Our results show that the differential cross section at the leading-order is significantly enhanced by the NLO QCD corrections. We conclude that the LHC has the potential to verify the color-octet mechanism by measuring the J/ψ+Z0J/\psi+Z^0 production events.Comment: 14 page revtex, 5 eps figures, to appear in JHEP. fig5 and the corresponding analysis are correcte

    The NLO QCD Corrections to BcB_c Meson Production in Z0Z^0 Decays

    Full text link
    The decay width of Z0Z^0 to BcB_c meson is evaluated at the next-to-leading order(NLO) accuracy in strong interaction. Numerical calculation shows that the NLO correction to this process is remarkable. The quantum chromodynamics(QCD)renormalization scale dependence of the results is obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende

    Electric Field Exposure Triggers and Guides Formation of Pseudopod-Like Blebs in U937 Monocytes

    Get PDF
    We describe a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells stimulated by nanosecond pulsed electric field (nsPEF). In contrast to regular, round-shaped blebs, which are often seen in response to cell damage, pseudopod-like blebs (PLBs) formed as longitudinal membrane protrusions toward anode. PLB length could exceed the cell diameter in 2 min of exposure to 60-ns, 10-kV/cm pulses delivered at 10-20 Hz. Both PLBs and round-shaped nsPEF-induced blebs could be efficiently inhibited by partial isosmotic replacement of bath NaCl for a larger solute (sucrose), thereby pointing to the colloid-osmotic water uptake as the principal driving force for bleb formation. In contrast to round-shaped blebs, PLBs retracted within several minutes after exposure. Cells treated with 1 nM of the actin polymerization blocker cytochalasin D were unable to form PLBs and instead produced stationary, spherical blebs with no elongation or retraction capacity. Live cell fluorescent actin tagging showed that during elongation actin promptly entered the PLB interior, forming bleb cortex and scaffold, which was not seen in stationary blebs. Overall, PLB formation was governed by both passive (physicochemical) effects of membrane permeabilization and active cytoskeleton assembly in the living cell. To a certain extent, PLB mimics the membrane extension in the process of cell migration and can be employed as a nonchemical model for studies of cytomechanics, membrane-cytoskeleton interaction and cell motility

    Selective blockade of the discriminative stimulus effects of pentobarbital in pigeons

    Full text link
    The ability of CNS stimulants to block the discriminative effects of pentobarbital was studied in pigeons trained to discriminate IM pentobarbital (5 mg/kg) from saline. Pentobarbital, when administered alone, consistently produced greater than 90% pentobarbital-appropriate responding. The concomitant administration of pentobarbital and increasing doses of bemegride or pentylenetetrazol resulted in a dose-related decrease in pentobarbital-appropriate responses. In contrast, picrotoxin, another CNS stimulant, had little or no effect on pentobarbital-appropriate responding produced by pentobarbital.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46426/1/213_2004_Article_BF00432447.pd

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding

    Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality

    Get PDF
    The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by many independent studies, the reason for this correlation remains illusive. Several hypotheses about putative connections between essentiality of hubs and the topology of protein–protein interaction networks have been proposed, but as we demonstrate, these explanations are not supported by the properties of protein interaction networks. To identify the main topological determinant of essentiality and to provide a biological explanation for the connection between the network topology and essentiality, we performed a rigorous analysis of six variants of the genomewide protein interaction network for Saccharomyces cerevisiae obtained using different techniques. We demonstrated that the majority of hubs are essential due to their involvement in Essential Complex Biological Modules, a group of densely connected proteins with shared biological function that are enriched in essential proteins. Moreover, we rejected two previously proposed explanations for the centrality-lethality rule, one relating the essentiality of hubs to their role in the overall network connectivity and another relying on the recently published essential protein interactions model
    corecore