7 research outputs found

    Interaction between Plate Make and Protein in Protein Crystallisation Screening

    Get PDF
    Background: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate

    Structural characterization of core-bradavidin in complex with biotin

    Get PDF
    <div><p>Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria <i>Bradyrhizobium diazoefficiens</i>. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (<i>i</i>.<i>e</i>. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from <i>Rhodopseudomonas palustris</i>, and of an avidin-like protein from <i>Bradyrhizobium sp</i>. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in <i>E</i>. <i>coli</i>, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.</p></div

    Systemic vitamin intake impacting tissue proteomes

    No full text

    Organic Compounds

    No full text
    corecore