517 research outputs found

    On misunderstanding Heraclitus: The justice of organisation structure

    Get PDF
    Writers on organisational change often refer to the cosmology of Heraclitus in their work. Some use these references to support arguments for the constancy and universality of organisational change and the consignment to history of organisational continuity and stability. These writers misunderstand the scope of what Heraclitus said. Other writers focus exclusively on the idea that originated with Heraclitus that the universe is composed of processes and not of things. This idea, which has been particularly associated with Heraclitus’s thought from the time of Plato, does indeed provide a rich source of insights into organisational analysis, not least the current trends towards giving proper attention to processual studies of organisational change. Yet there is some uncertainty as to whether Heraclitus actually said that the universe was composed exclusively of processes rather than things, and even if that was what he thought, he intended his ideas on flux to be understood not in isolation but in the context of other aspects of his cosmology. Writers on organisational change seldom make reference to this wider context. Heraclitus was a rational but also a religious thinker. A central element in his thought was the notion of divine Justice, which to a Greek of his era meant the order of the universe. Remote as his Olympian theology may seem today, it sets a crucial and entirely rational context for understanding his ideas about flux. It means that ideas about continuity and stability were quite as important in Heraclitus’s cosmology as his more commonly quoted ideas about change. This paper sets out an overview of Heraclitus’s philosophy, insofar as it appears to have potential relevance to organisational analysis, and discusses how far it supports or contradicts the ideas that organisational change scholars have drawn from it

    Saccharomyces cerevisiae-based system for studying clustered DNA damages

    Get PDF
    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents

    Quantitative Doppler tissue imaging as a correlate of left ventricular contractility

    Full text link
    Doppler tissue imaging is a new noninvasive imaging modality that allows quantitation of the low intensity, high amplitude Doppler shifts in the range of myocardial tissue motion. This study was performed to test the hypothesis that Doppler tissue imaging may provide unique information reflecting left ventricular systolic function, and to test the relationship between myocardial tissue velocity and noninvasive measures of ventricular contractility. Nine patients with mild or moderate mitral insufficiency and no regional wall motion abnormality were studied during dobutamine stress echocardiography. Left ventricular ejection fraction and peak systolic velocity of the sub- endocardial left ventricular posterior wall were quantified at baseline and at peak stress and compared with estimated peak dP/dt. During dobutamine infusion, ejection fraction increased from 41.7±22.2 (range 14 to 70) % to 56.6±27.9 (range 17 to 84) % (p=0.001), peak systolic velocity increased from 22.7±4.2 (range 18 to 28) mm/sec to 35.3±10.1 (range 20 to 47) mm/sec (p=0.004), and dP/dt increased from 1050±322 (range 613 to 1574) mm Hg/sec to 1766±768 (range 936 to 3000) mm Hg/sec (p=0.01). Although there were good correlations between left ventricular dP/dt and both ejection fraction (R=0.75) and peak systolic velocity (R=0.81), the correlation between change in dP/dt and change in myocardial velocity (R=0.75) was better than that between change in dP/dt and change in ejection fraction (R=0.36). These data support the hypothesis that myocardial velocity determined with Doppler tissue imaging reflects myocardial contractility, and that catecholamine- induced alteration in contractility is better reflected by changes in myocardial velocity than by changes in ejection fraction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42539/1/10554_2005_Article_BF01806222.pd

    Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment

    Get PDF
    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS

    Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence

    Get PDF
    Rising sea temperatures are likely to increase the frequency of disease outbreaks affecting reef-building corals through impacts on coral hosts and pathogens. We present and compare climate model projections of temperature conditions that will increase coral susceptibility to disease, pathogen abundance and pathogen virulence. Both moderate (RCP 4.5) and fossil fuel aggressive (RCP 8.5) emissions scenarios are examined. We also compare projections for the onset of disease-conducive conditions and severe annual coral bleaching, and produce a disease risk summary that combines climate stress with stress caused by local human activities. There is great spatial variation in the projections, both among and within the major ocean basins, in conditions favouring disease development. Our results indicate that disease is as likely to cause coral mortality as bleaching in the coming decades. These projections identify priority locations to reduce stress caused by local human activities and test management interventions to reduce disease impacts

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Efficient Gene Targeting by Homologous Recombination in Rat Embryonic Stem Cells

    Get PDF
    The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat

    The impact of caspase-12 on susceptibility to candidemia

    Get PDF
    Candida is one of the leading causes of sepsis, and an effective host immune response to Candida critically depends on the cytokines IL-1β and IL-18, which need caspase-1 cleavage to become bioactive. Caspase-12 has been suggested to inhibit caspase-1 activation and has been implicated as a susceptibility factor for bacterial sepsis. In populations of African descent, CASPASE-12 is either functional or non-functional. Here, we have assessed the frequencies of both CASPASE-12 alleles in an African-American Candida sepsis patients cohort compared to uninfected patients with similar predisposing factors. African-American Candida sepsis patients (n = 93) and non-infected African-American patients (n = 88) were genotyped for the CASPASE-12 genotype. Serum cytokine concentrations of IL-6, IL-8, and IFNγ were measured in the serum of infected patients. Statistical comparisons were performed in order to assess the effect of the CASPASE-12 genotype on susceptibility to candidemia and on serum cytokine concentrations. Our findings demonstrate that CASPASE-12 does not influence the susceptibility to Candida sepsis, nor has any effect on the serum cytokine concentrations in Candida sepsis patients during the course of infection. Although the functional CASPASE-12 allele has been suggested to increase susceptibility to bacterial sepsis, this could not be confirmed in our larger cohort of fungal sepsis patients

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae
    • …
    corecore