106 research outputs found
Accelerating Surgical Robotics Research: A Review of 10 Years With the da Vinci Research Kit
Robotic-assisted surgery is now well-established in clinical practice and has
become the gold standard clinical treatment option for several clinical
indications. The field of robotic-assisted surgery is expected to grow
substantially in the next decade with a range of new robotic devices emerging
to address unmet clinical needs across different specialities. A vibrant
surgical robotics research community is pivotal for conceptualizing such new
systems as well as for developing and training the engineers and scientists to
translate them into practice. The da Vinci Research Kit (dVRK), an academic and
industry collaborative effort to re-purpose decommissioned da Vinci surgical
systems (Intuitive Surgical Inc, CA, USA) as a research platform for surgical
robotics research, has been a key initiative for addressing a barrier to entry
for new research groups in surgical robotics. In this paper, we present an
extensive review of the publications that have been facilitated by the dVRK
over the past decade. We classify research efforts into different categories
and outline some of the major challenges and needs for the robotics community
to maintain this initiative and build upon it
Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV
A search for pair-produced charged Higgs bosons is performed with the L3
detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV,
corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a
charm and a strange quark or into a tau lepton and its associated neutrino are
considered. The observed events are consistent with the expectations from
Standard Model background processes. A lower limit of 65.5 GeV on the charged
Higgs mass is derived at 95 % confidence level, independent of the decay
branching ratio Br(H^{+/-} -> tau nu)
Recommended from our members
Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain.
PurposeWe characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1ÎČ subunit of the cyclic AMP-dependent protein kinase A (PKA).MethodsVariants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development.ResultsRecent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs.ConclusionOur study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder
- âŠ