363 research outputs found

    Viral population estimation using pyrosequencing

    Get PDF
    The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an EM algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure

    Potential health impacts of heavy metals on HIV-infected population in USA.

    Get PDF
    Noninfectious comorbidities such as cardiovascular diseases have become increasingly prevalent and occur earlier in life in persons with HIV infection. Despite the emerging body of literature linking environmental exposures to chronic disease outcomes in the general population, the impacts of environmental exposures have received little attention in HIV-infected population. The aim of this study is to investigate whether individuals living with HIV have elevated prevalence of heavy metals compared to non-HIV infected individuals in United States. We used the National Health and Nutrition Examination Survey (NHANES) 2003-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury in HIV infected and non-HIV infected subjects. In this cross-sectional study, we found that HIV-infected individuals had higher concentrations of all heavy metals than the non-HIV infected group. In a multivariate linear regression model, HIV status was significantly associated with increased blood cadmium (p=0.03) after adjusting for age, sex, race, education, poverty income ratio, and smoking. However, HIV status was not statistically associated with lead or mercury levels after adjusting for the same covariates. Our findings suggest that HIV-infected patients might be significantly more exposed to cadmium compared to non-HIV infected individuals which could contribute to higher prevalence of chronic diseases among HIV-infected subjects. Further research is warranted to identify sources of exposure and to understand more about specific health outcomes

    Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place <it>in situ </it>in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins.</p> <p>Results</p> <p>We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR), is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within <it>ex utero </it>cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time.</p> <p>Conclusion</p> <p>Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells, collective cell dynamics and fate mapping applications.</p

    Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes

    Get PDF
    BACKGROUND: Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Serum Levels of Adipocyte Fatty Acid-Binding Protein Are Associated with the Severity of Coronary Artery Disease in Chinese Women

    Get PDF
    BACKGROUND: Adipocyte fatty acid-binding protein (A-FABP) has been described as a novel adipokine, playing an important role in the development of metabolic syndrome, type 2 diabetes and atherosclerosis. In this study, we investigated the relationship between serum levels of A-FABP and the presence and severity of coronary artery disease (CAD) in Chinese subjects. METHODOLOGY/PRINCIPAL FINDINGS: Circulating A-FABP level was determined by ELISA in 341 Chinese subjects (221 men, 120 women) who underwent coronary angiography. A-FABP levels in patients with CAD were significantly higher compared with non-CAD subjects (P = 0.029 in men; P = 0.031 in women). Serum A-FABP increased significantly in multi-vessel diseased patients than in non-CAD subjects (P = 0.011 in men, P = 0.004 in women), and showed an independent correlation with coronary atherosclerosis index (standardized β = 0.173, P = 0.025). In multiple logistic regression analysis, serum A-FABP was an independent risk factor for CAD in women (OR = 5.637, 95%CI: 1.299-24.457, P = 0.021). In addition, amino terminal pro-brain natriuretic peptide (NT-proBNP) was demonstrated to be positively and independently correlated with A-FABP (standardized β = 0.135, P = 0.027). CONCLUSIONS/SIGNIFICANCE: Serum A-FABP is closely associated with the presence and severity of CAD in Chinese women

    Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese

    Get PDF
    Interferon-γ (IFN-γ) is a key molecule of T helper 1 (Th1)-immune response against tuberculosis (TB), and rare genetic defects of IFN-γ receptors cause disseminated mycobacterial infection. The aim of the present study was to investigate whether genetic polymorphisms found in the Th1-immune response genes play a role in TB. In our study, DNA samples were collected from two series of cases including 832 patients with new smear-positive TB and 506 unrelated individuals with no history of TB in the general population of Hanoi, Vietnam. Alleles of eight microsatellite markers located around Th1-immune response-related genes and single nucleotide polymorphisms near the promising microsatellites were genotyped. A set of polymorphisms within the interferon gamma receptor 2 gene (IFNGR2) showed a significant association with protection against TB (P = 0.00054). Resistant alleles tend to be less frequently found in younger age at diagnosis (P = 0.011). Luciferase assays revealed high transcriptional activity of the promoter segment in linkage disequilibrium with resistant alleles. We conclude that the polymorphisms of IFNGR2 may confer resistance to the TB development of newly infected individuals. Contribution of the genetic factors to TB appeared to be different depending on age at diagnosis

    Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River

    Get PDF
    We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous – consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings
    corecore