160 research outputs found
The role of atopy in otitis media with effusion among primary school children: audiological investigation
Objective of this study is to value the role of atopy in otitis media with effusion (OME) in children attending primary school in Western Sicily focusing on the audiological characteristics among atopic and non atopic subjects suffering from OME. 310 children (5-6 years old) were screened by skin tests and divided into atopics (G1) and non atopics (G2). The samples were evaluated for OME by pneumatic otoscopy, tympanogram and acoustic reflex tests. The parameters considered were: documented persistent middle ear effusion by otoscopic examination for a minimum of 3 months; presence of B or C tympanogram; absence of ipsilateral acoustic reflex and a conductive hearing loss greater than 25 dB at any one of the frequencies from 250 Hz through 4 kHz. 56 children (18.06%) resulted atopics while 254 were non atopics. OME was identified in 24 atopic children and in 16 non atopic children for a total number of 40 children; the overall prevalence rate was 12.9% (42.85% for G1 and 6.30% for G2). OME was bilateral in 28 children (70%), with a significative difference between G1 (79.17%) and G2 (56.25%). The prevalence of B tympanogram was 70.59%, corresponding to 79.07% for G1 and 56% for G2. The mean air conduction pure tone was respectively 31.97 dB for G1 and 29.8 dB for G2. The prevalence value of OME in atopics children, also supported by the higher predominance of bilaterality, B tympanogram and hearing loss among this group, could suggest the important role of allergy in the pathogenesis of OME
Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO
The shape dependence of the catalytic reduction of nitric oxide by carbon monoxide on rhodium nanopolyhedra and nanocubes was studied from 230 to 270 degrees C. The nanocubes are found to exhibit higher turnover frequency and lower activation energy than the nanopolyhedra. These trends are compared to previous studies on Rh single crystals.Chemistry, PhysicalSCI(E)EI21ARTICLE3-4317-32213
Direct susceptibility testing for multi drug resistant tuberculosis: A meta-analysis
<p>Abstract</p> <p>Background</p> <p>One of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in <it>M. tuberculosis</it>. The four direct tests included two in-house phenotypic assays â Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests â Genotype<sup>ÂŽ </sup>MTBDR and Genotype<sup>ÂŽ </sup>MTBDR<it>plus </it>(Hain Life Sciences, Nehren, Germany).</p> <p>Methods</p> <p>A literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.</p> <p>Results</p> <p>Eighteen direct DST reports were analysed: NRA â 4, MODS- 6, Genotype MTBDR<sup>ÂŽ </sup>â 3 and Genotype<sup>ÂŽ </sup>MTBDR<it>plus </it>â 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype<sup>ÂŽ </sup>MTBDR, and 99% and 99% with the new Genotype<sup>ÂŽ </sup>MTBDR<it>plus</it>, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype<sup>ÂŽ </sup>MTBDR, and 96% and 100% with the Genotype<sup>ÂŽ </sup>MTBDR<it>plus</it>, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 â 2 days and also the phenotypic assays were much more rapid than conventional testing.</p> <p>Conclusion</p> <p>Direct testing of rifampicin and isoniazid resistance in <it>M. tuberculosis </it>was found to be highly sensitive and specific, and allows prompt detection of MDR TB.</p
Dehydrocostuslactone Suppresses Angiogenesis In Vitro and In Vivo through Inhibition of Akt/GSK-3β and mTOR Signaling Pathways
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer
A Screen against Leishmania Intracellular Amastigotes: Comparison to a Promastigote Screen and Identification of a Host Cell-Specific Hit
The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insectâinfective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy
Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment
Background: Neighborhood deprivation has been consistently linked to poor individual health outcomes; however, studies exploring the mechanisms involved in this association are scarce. The objective of this study was to investigate whether objective measures of the physical environment mediate the association between neighborhood socioeconomic deprivation and biomarkers of health in Britain. Methods: We linked individual-level biomarker data from Understanding Society: The UK Household Longitudinal Survey (2010-2012) to neighborhood-level data from different governmental sources. Our outcome variables were forced expiratory volume in 1 s (FEV1%; n=16,347), systolic blood pressure (SBP; n=16,846), body mass index (BMI; n=19,417), and levels of C-reactive protein (CRP; n=11,825). Our measure of neighborhood socioeconomic deprivation was the Carstairs index, and the neighborhood-level mediators were levels of air pollutants (sulphur dioxide [SO2], particulate matter [PM10], nitrogen dioxide [NO2], and carbon monoxide [CO]), green space, and proximity to waste and industrial facilities. We fitted a multilevel mediation model following a multilevel structural equation framework in MPlus v7.4, adjusting for age, gender, and income. Results: Residents of poor neighborhoods and those exposed to higher pollution and less green space had worse health outcomes. However, only SO2exposure significantly and partially mediated the association between neighborhood socioeconomic deprivation and SBP, BMI, and CRP. Conclusion: Reducing air pollution exposure and increasing access to green space may improve population health but may not decrease health inequalities in Britain
- âŚ