5,451 research outputs found
Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition
Aerial scene recognition is a fundamental task in remote sensing and has
recently received increased interest. While the visual information from
overhead images with powerful models and efficient algorithms yields
considerable performance on scene recognition, it still suffers from the
variation of ground objects, lighting conditions etc. Inspired by the
multi-channel perception theory in cognition science, in this paper, for
improving the performance on the aerial scene recognition, we explore a novel
audiovisual aerial scene recognition task using both images and sounds as
input. Based on an observation that some specific sound events are more likely
to be heard at a given geographic location, we propose to exploit the knowledge
from the sound events to improve the performance on the aerial scene
recognition. For this purpose, we have constructed a new dataset named AuDio
Visual Aerial sceNe reCognition datasEt (ADVANCE). With the help of this
dataset, we evaluate three proposed approaches for transferring the sound event
knowledge to the aerial scene recognition task in a multimodal learning
framework, and show the benefit of exploiting the audio information for the
aerial scene recognition. The source code is publicly available for
reproducibility purposes.Comment: ECCV 202
Revisiting Scalar and Pseudoscalar Couplings with Nucleons
Certain dark matter interactions with nuclei are mediated possibly by a
scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross
sections requires a correct evaluation of the couplings between the scalar or
pseudoscalar Higgs boson and the nucleons. Progress has been made in two
aspects relevant to this study in the past few years. First, recent lattice
calculations show that the strange-quark sigma term and the
strange-quark content in the nucleon are much smaller than what are expected
previously. Second, lattice and model analyses imply sizable SU(3) breaking
effects in the determination on the axial-vector coupling constant that
in turn affect the extraction of the isosinglet coupling and the
strange quark spin component from polarized deep inelastic
scattering experiments. Based on these new developments, we re-evaluate the
relevant nucleon matrix elements and compute the scalar and pseudoscalar
couplings of the proton and neutron. We also find that the strange quark
contribution in both types of couplings is smaller than previously thought.Comment: 17 pages, Sec. II is revised and the pion-nucleon sigma term
extracted from the scattering data is discussed. Version to appear in JHE
An assessment of pulse transit time for detecting heavy blood loss during surgical operation
Copyright @ Wang et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan
Dangerous Skyrmions in Little Higgs Models
Skyrmions are present in many models of electroweak symmetry breaking where
the Higgs is a pseudo-Goldstone boson of some strongly interacting sector. They
are stable, composite objects whose mass lies in the range 10-100 TeV and can
be naturally abundant in the universe due to their small annihilation
cross-section. They represent therefore good dark matter candidates. We show
however in this work that the lightest skyrmion states are electrically charged
in most of the popular little Higgs models, and hence should have been directly
or indirectly observed in nature already. The charge of the skyrmion under the
electroweak gauge group is computed in a model-independent way and is related
to the presence of anomalies in the underlying theory via the
Wess-Zumino-Witten term.Comment: 31 pages, 4 figures; v2: minor changes, one reference added, version
to appear in JHEP; v3: erratum added, conclusions unchange
Towards the glueball spectrum from unquenched lattice QCD
We use a variational technique to study heavy glueballs on gauge
configurations generated with 2+1 flavours of ASQTAD improved staggered
fermions. The variational technique includes glueball scattering states. The
measurements were made using 2150 configurations at 0.092 fm with a pion mass
of 360 MeV. We report masses for 10 glueball states. We discuss the prospects
for unquenched lattice QCD calculations of the oddballs.Comment: 19 pages, 4 tables and 8 figures. One figure added. Now matches the
published versio
Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes
We propose a new turbulence closure model based on the budget equations for
the key second moments: turbulent kinetic and potential energies: TKE and TPE
(comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent
fluxes of momentum and buoyancy (proportional to potential temperature).
Besides the concept of TTE, we take into account the non-gradient correction to
the traditional buoyancy flux formulation. The proposed model grants the
existence of turbulence at any gradient Richardson number, Ri. Instead of its
critical value separating - as usually assumed - the turbulent and the laminar
regimes, it reveals a transition interval, 0.1< Ri <1, which separates two
regimes of essentially different nature but both turbulent: strong turbulence
at Ri<<1; and weak turbulence, capable of transporting momentum but much less
efficient in transporting heat, at Ri>1. Predictions from this model are
consistent with available data from atmospheric and lab experiments, direct
numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised
versio
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.
Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable
variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However,
the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown.
Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse
model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J
mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa
clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait.
Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic
(SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and
was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1,
Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and
inflammatory processes.
Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored
to complement human studie
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
- …
