22 research outputs found

    Factors affecting exhaled nitric oxide measurements: the effect of sex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exhaled nitric oxide (F<sub>E</sub>NO) measurements are used as a surrogate marker for eosinophilic airway inflammation. However, many constitutional and environmental factors affect F<sub>E</sub>NO, making it difficult to devise reference values. Our aim was to evaluate the relative importance of factors affecting F<sub>E</sub>NO in a well characterised adult population.</p> <p>Methods</p> <p>Data were obtained from 895 members of the Dunedin Multidisciplinary Health and Development Study at age 32. The effects of sex, height, weight, lung function indices, smoking, atopy, asthma and rhinitis on F<sub>E</sub>NO were explored by unadjusted and adjusted linear regression analyses.</p> <p>Results</p> <p>The effect of sex on F<sub>E</sub>NO was both statistically and clinically significant, with F<sub>E</sub>NO levels approximately 25% less in females. Overall, current smoking reduced F<sub>E</sub>NO up to 50%, but this effect occurred predominantly in those who smoked on the day of the F<sub>E</sub>NO measurement. Atopy increased F<sub>E</sub>NO by 60%. The sex-related differences in F<sub>E</sub>NO remained significant (p < 0.001) after controlling for all other significant factors affecting F<sub>E</sub>NO.</p> <p>Conclusion</p> <p>Even after adjustment, F<sub>E</sub>NO values are significantly different in males and females. The derivation of reference values and the interpretation of F<sub>E</sub>NO in the clinical setting should be stratified by sex. Other common factors such as current smoking and atopy also require to be taken into account.</p

    Associations of airway inflammation and responsiveness markers in non asthmatic subjects at start of apprenticeship

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial Hyperresponsiveness (BHR) is considered a hallmark of asthma. Other methods are helpful in epidemiological respiratory health studies including Fractional Exhaled Nitric Oxide (FENO) and Eosinophils Percentage (EP) in nasal lavage fluid measuring markers for airway inflammation along with the Forced Oscillatory Technique measuring Airway resistance (AR). Can their outcomes discriminate profiles of respiratory health in healthy subjects starting apprenticeship in occupations with a risk of asthma?</p> <p>Methods</p> <p>Rhinoconjunctivitis, asthma-like symptoms, FEV1 and AR post-Methacholine Bronchial Challenge (MBC) test results, FENO measurements and EP were all investigated in apprentice bakers, pastry-makers and hairdressers not suffering from asthma. Multiple Correspondence Analysis (MCA) was simultaneously conducted in relation to these groups and this generated a synthetic partition (EI). Associations between groups of subjects based on BHR and EI respectively, as well as risk factors, symptoms and investigations were also assessed.</p> <p>Results</p> <p>Among the 441 apprentice subjects, 45 (10%) declared rhinoconjunctivitis-like symptoms, 18 (4%) declared asthma-like symptoms and 26 (6%) suffered from BHR. The mean increase in AR post-MBC test was 21% (sd = 20.8%). The median of FENO values was 12.6 ppb (2.6-132 range). Twenty-six subjects (6.7%) had EP exceeding 14%. BHR was associated with atopy (p < 0.01) and highest FENO values (p = 0.09). EI identified 39 subjects with eosinophilic inflammation (highest values of FENO and eosinophils), which was associated with BHR and atopy.</p> <p>Conclusions</p> <p>Are any of the identified markers predictive of increased inflammatory responsiveness or of development of symptoms caused by occupational exposures? Analysis of population follow-up will attempt to answer this question.</p

    Indirect monitoring of lung inflammation

    No full text
    The assessment of airway inflammation by non-invasive methods could provide a signal to start anti-inflammatory treatment before the onset of symptoms and the impairment of lung function. It could also be useful in the follow-up of patients with lung disease, and for guiding drug treatment. Measuring inflammatory markers in exhaled breath condensate is potentially the easiest way to quantify lung inflammation. The clinical applicability of this method could facilitate the practice of respiratory medicin
    corecore